首页> 外文会议>2012 IEEE Visual Communications and Image Processing. >A fast multiscale framework for data in high-dimensions: Measure estimation, anomaly detection, and compressive measurements
【24h】

A fast multiscale framework for data in high-dimensions: Measure estimation, anomaly detection, and compressive measurements

机译:高维数据的快速多尺度框架:度量估计,异常检测和压缩度量

获取原文
获取原文并翻译 | 示例

摘要

Data sets are often modeled as samples from some probability distribution lying in a very high dimensional space. In practice, they tend to exhibit low intrinsic dimensionality, which enables both fast construction of efficient data representations and solving statistical tasks such as regression of functions on the data, or even estimation of the probability distribution from which the data is generated. In this paper we introduce a novel multiscale density estimator for high dimensional data and apply it to the problem of detecting changes in the distribution of dynamic data, or in a time series of data sets. We also show that our data representations, which are not standard sparse linear expansions, are amenable to compressed measurements. Finally, we test our algorithms on both synthetic data and a real data set consisting of a times series of hyperspectral images, and demonstrate their high accuracy in the detection of anomalies.
机译:通常将数据集建模为来自非常高维空间中某些概率分布的样本。实际上,它们倾向于表现出较低的固有维数,这既可以快速构建有效的数据表示形式,又可以解决统计任务,例如对数据上的函数进行回归,甚至估计从中生成数据的概率分布。在本文中,我们针对高维数据引入了一种新颖的多尺度密度估计器,并将其应用于检测动态数据分布或数据集时间序列变化的问题。我们还表明,我们的数据表示形式(不是标准的稀疏线性扩展)适用于压缩测量。最后,我们在合成数据和由时间序列的高光谱图像组成的真实数据集上测试我们的算法,并证明了它们在异常检测中的高精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号