首页> 外文会议>2012 IEEE Statistical Signal Processing Workshop. >A new regularized TVAR-based algorithm for recursive detection of nonstationarity and its application to speech signals
【24h】

A new regularized TVAR-based algorithm for recursive detection of nonstationarity and its application to speech signals

机译:一种新的基于TVAR的正则化非平稳递归检测算法及其在语音信号中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a new recursive nonstationarity detection method based on time-varying autoregressive (TVAR) modeling. A local likelihood estimation approach is introduced which gives more weights to observations near the current time instant but less to those distance apart. It thus allows the Wald test to be computed based on RLS-type algorithms with low computational cost. A reliable and efficient state regularized variable forgetting factor (VFF) QR decomposition (QRD)-based RLS (SR-VFF-QRRLS) algorithm is adopted for estimation for its asymptotically unbiased property and immunity to lacking of excitation. Advantages of the proposed approach over conventional approaches are 1) it provides continuous parameter estimates and the corresponding stationary intervals with low complexity, 2) it mitigates low excitation problems using state regularization, and 3) stationarity at different scales can be detected by appropriately choosing a certain window size. The effectiveness of the proposed algorithm is evaluated by testing vocal tract changes in real speech signals.
机译:本文提出了一种基于时变自回归(TVAR)建模的递归非平稳性检测方法。引入了局部似然估计方法,该方法对当前时刻附近的观测值赋予更大的权重,而对相距较小的距离赋予较小的权重。因此,它允许基于RLS型算法以低计算成本来计算Wald检验。基于可靠且高效的状态正则化变量遗忘因子(VFF)QR分解(QRD)的RLS(SR-VFF-QRRLS)算法用于估计其渐近无偏性和对缺乏激励的抵抗力。与传统方法相比,该方法的优点是:1)提供连续的参数估计值和相应的固定间隔,且复杂度较低; 2)使用状态正则化减轻了低激励问题; 3)可以通过适当选择a来检测不同规模的平稳性一定的窗口大小。通过测试真实语音信号中声道变化来评估所提出算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号