机译:基于可变正则化QR分解的递归最小M估计算法—性能分析和声学应用
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong;
Gaussian noise; acoustic noise; acoustic signal detection; acoustic signal processing; active noise control; adaptive filters; convergence; covariance matrices; difference equations; impulse noise; mean square error methods; numerical stability; recursive estimation; singular value decomposition; ANC algorithm; EMSE; QR decomposition; QRD; RLM algorithm; VR-QRRLM algorithm; acoustic path identification; acoustic signal processing; active noise control; adaptive filter; additive contaminated Gaussian noise; convergence; covariance matrix; difference equation; excess mean square error; impulsive noise; numerical stability; recursive least M-estimation algorithm; regularization; Adaptive filters; Algorithm design and analysis; Convergence; Noise; Performance analysis; Signal processing algorithms; Vectors; ANC; Adaptive filters; performance analysis; recursive M-estimation; variable reg;
机译:稀疏系统辨识的鲁棒正则化递推最小M估计算法
机译:稀疏系统辨识的鲁棒正则化递推最小M估计算法
机译:鲁棒线性估计的变换域正则化递归最小M估计新算法
机译:一种新的规范化QRD递归最小M估计算法:性能分析和应用
机译:具有灵活缺失机制的变量选择正则化:方法,算法和应用
机译:... ... ...-基于规则的递归总最小二乘稀疏系统的变量误差识别
机译:一种新的变量正则化QR分解递归最小m-估计算法 - 性能分析与声学应用