首页> 外文会议>2012 IEEE Statistical Signal Processing Workshop. >Gene deletion data based genomic regulatory network inference
【24h】

Gene deletion data based genomic regulatory network inference

机译:基于基因缺失数据的基因组调控网络推论

获取原文
获取原文并翻译 | 示例

摘要

The gene deletion data is a type of gene expression data, which is obtained by deleting each gene consecutively from the network and measuring the fitness of the remaining network under various environmental conditions. Compared to the microarray data, the deletion data is much easier and economical to obtain. The gene tag technology has enabled the deletion data to be largely available for various regulatory networks. However, very few inference algorithms are proposed for the deletion data in spite of its advantages. In this paper, we propose an inference algorithm based on gene deletion data. The proposed inference algorithm capture the dynamical and non-linear natures of the regulatory networks. We conduct experiment on the GAL network to demonstrate the performance of the proposed algorithm. The proposed algorithm has been shown to serve as a good alternatives for exploring various regulatory networks other than using microarray data.
机译:基因缺失数据是基因表达数据的一种,其是通过从网络连续删除每个基因并在各种环境条件下测量剩余网络的适应性而获得的。与微阵列数据相比,缺失数据更容易且经济地获得。基因标签技术已使删除数据在很大程度上可用于各种监管网络。然而,尽管删除数据有其优点,但很少有人提出用于删除数据的推理算法。在本文中,我们提出了一种基于基因缺失数据的推理算法。所提出的推理算法捕获了监管网络的动态和非线性性质。我们在GAL网络上进行实验,以证明所提出算法的性能。该算法已被证明可以作为探索除使用微阵列数据以外的各种监管网络的良好选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号