首页> 外文会议>2012 IEEE Conference on Computational Intelligence for Financial Engineering amp; Economics. >Comparison of data classification methods for predictive ranking of banks exposed to risk of failure
【24h】

Comparison of data classification methods for predictive ranking of banks exposed to risk of failure

机译:数据分类方法对暴露于破产风险的银行的预测排名的比较

获取原文
获取原文并翻译 | 示例

摘要

The difficulty of understanding a financial institution's risk of default has been highlighted by multiple recent episodes in both the U.S. and in Europe. This paper describes a study on the empirical comparison of classification techniques for predictive ranking of the 12 month risk of default in banks. This work compares the scoring capabilities of different predictive models. The models compared were induced from past levels of risk exposure observed in historic data. The ranking performance of the models is compared by assessing the highest risk cases, using the left-hand side of the model's ROC curves (i.e., curves representing true positive to false positive rates). Empirical comparisons were performed using FDIC call report data and a one-year-ahead ranking prediction schema. This comparison demonstrates that inductive machine learning techniques can be successfully applied for predictive ranking of default risk. Observed results indicate better performance by symbolic rule or decision tree based models than by traditional modeling techniques based on statistical algorithms.
机译:在美国和欧洲,最近发生的许多事件都凸显了理解金融机构违约风险的困难。本文介绍了一项分类技术的经验比较研究,该分类技术可对银行的12个月违约风险进行预测排名。这项工作比较了不同预测模型的评分能力。比较的模型是从历史数据中观察到的过去风险暴露水平得出的。通过使用模型的ROC曲线的左侧(即代表真阳性率和假阳性率的曲线)评估最高风险案例,比较了模型的排名效果。使用FDIC呼叫报告数据和提前一年的排名预测方案进行了经验比较。这种比较表明,归纳式机器学习技术可以成功地应用于默认风险的预测排名。观察到的结果表明,基于符号规则或决策树的模型比基于统计算法的传统建模技术具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号