首页> 外文会议>2012 Eighth International Conference on Computational Intelligence and Security. >Fast Static Particle Swarm Optimization Based Feature Selection for Face Detection
【24h】

Fast Static Particle Swarm Optimization Based Feature Selection for Face Detection

机译:基于快速静态粒子群优化的人脸检测特征选择

获取原文
获取原文并翻译 | 示例

摘要

Feature selection only using wrapper method in high-dimensional data space is always time-consuming. A new feature selection method, named fast static particle swarm optimization, is proposed for tackling this problem. It treats the whole initial feature set as a static particle swarm in which no new particle would be generated in high dimensional space, and the proposed method takes filter and wrapper strategy to pick out the most discriminative feature particle subset. Compared with the existing methods, experimental results show that the proposed method is faster than the existing methods in frontal face detection, and the detection error rate is lower than them on average.
机译:仅在高维数据空间中使用包装方法进行特征选择总是很耗时。针对这一问题,提出了一种新的特征选择方法,即快速静态粒子群优化算法。该方法将整个初始特征集视为一个静态粒子群,其中在高维空间中不会生成新粒子,并且该方法采用了过滤器和包装器策略来挑选出最具区分性的特征粒子子集。与现有方法相比,实验结果表明,该方法在人脸检测中比现有方法具有更快的速度,并且检测错误率平均低于传统方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号