首页> 外文会议>2012 2nd IEEE International Conference on Parallel Distributed and Grid Computing. >Identifying most relevant non-redundant gene markers from gene expression data using PSO-based graph -theoretic approach
【24h】

Identifying most relevant non-redundant gene markers from gene expression data using PSO-based graph -theoretic approach

机译:使用基于PSO的图论方法从基因表达数据中识别最相关的非冗余基因标记

获取原文
获取原文并翻译 | 示例

摘要

A graph-theoretic approach for non-redundant gene marker selection from microarray gene expression data has been presented in this article. The sample versus gene data presented by microarray data is first converted into a weighted undirected complete feature-graph where the nodes represent the genes having gene's relevance as node weights and the edges are weighted according to the similarity value (correlation) among the genes. Then the densest subgraph having minimum average edge weight (similarity) and maximum average node weight (snr value) is identified from the original feature-graph. To find the densest subgraph, binary particle swarm optimization has been applied for minimizing the average edge weight and maximizing the average node weigh through a single objective function. Thus an optimized reduced subgraph is found which contains final selected genes for which average correlation is very less and average gene relevance is very high. The proposed method is compared with SFS, T-test and Ranksum test in terms of sensitivity, specificity, accuracy, fscore, Area Under ROC Curve (AUC) and average correlation on several real-life data sets.
机译:本文提出了一种从图形微阵列基因表达数据中选择非冗余基因标记的图论方法。由微阵列数据提供的样本对基因数据首先被转换为加权无向完整特征图,其中节点代表具有基因相关性的基因作为节点权重,边缘根据基因之间的相似度值(相关性)加权。然后从原始特征图中识别出具有最小平均边缘权重(相似度)和最大平均节点权重(snr值)的最密集子图。为了找到最密集的子图,已应用二元粒子群算法通过单个目标函数来最小化平均边缘权重并最大化平均节点权重。因此,发现了一个优化的简化子图,该子图包含最终选择的基因,这些基因的平均相关性非常低,平均基因相关性非常高。在敏感性,特异性,准确性,fscore,ROC曲线下面积(AUC)和几个实际数据集的平均相关性方面,将所提出的方法与SFS,T检验和Ranksum检验进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号