首页> 外文会议>2011 Third National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics >Optimal Multilevel Thresholding for Image Segmentation Using Contrast-Limited Adaptive Histogram Equalization and Enhanced Convergence Particle Swarm Optimization
【24h】

Optimal Multilevel Thresholding for Image Segmentation Using Contrast-Limited Adaptive Histogram Equalization and Enhanced Convergence Particle Swarm Optimization

机译:有限对比度自适应直方图均衡和增强收敛粒子群算法的图像分割最优多阈值

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a Tsallis entropy based multilevel thresholding method for image segmentation, using Contrast-Limited Adaptive Histogram Equalization(CLAHE) and a novel algorithm called Enhanced Convergence Particle Swarm Optimization(ECPSO). This is done to optimize the thresholds so that better image segmentation is obtained. Ten test images have been used to obtain the results, which are then compared with those obtained from Genetic Algorithm(GA), Particle Swarm Optimization(PSO) and Bacterial Foraging(BF) algorithms. The results obtained by the proposed method have been found to be significantly better than those obtained by the above mentioned algorithms.
机译:提出了一种基于Tsallis熵的多阈值阈值图像分割方法,该方法采用了对比度受限的自适应直方图均衡化算法和一种新的算法,即改进的收敛粒子群优化算法(ECPSO)。这样做是为了优化阈值,以便获得更好的图像分割。已经使用十张测试图像来获得结果,然后将它们与从遗传算法(GA),粒子群优化(PSO)和细菌觅食(BF)算法获得的图像进行比较。已经发现,通过提出的方法获得的结果明显优于通过上述算法获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号