首页> 外文会议>2011 Second International Conference on Networking and Computing >A GPU Implementation of Computing Euclidean Distance Map with Efficient Memory Access
【24h】

A GPU Implementation of Computing Euclidean Distance Map with Efficient Memory Access

机译:具有高效内存访问能力的欧氏距离图计算的GPU实现

获取原文
获取原文并翻译 | 示例

摘要

Recent Graphics Processing Units (GPUs), which have many processing units, can be used for general purpose parallel computation. To utilize the powerful computing ability, GPUs are widely used for general purpose processing. Since GPUs have very high memory bandwidth, the performance of GPUs greatly depends on memory access. The main contribution of this paper is to present a GPU implementation of computing Euclidean Distance Map (EDM) with efficient memory access. Given a 2-D binary image, EDM is a 2-D array of the same size such that each element is storing the Euclidean distance to the nearest black pixel. In the proposed GPU implementation, we have considered many programming issues of the GPU system such as coalescing access of global memory, shared memory bank conflicts and partition camping. In practice, we have implemented our parallel algorithm in the following two modern GPU systems: Tesla C1060 and GTX 480, respectively. The experimental results have shown that, for an input binary image with size of $9216times 9216$, our implementation can achieve a speedup factor of 52 over the sequential algorithm implementation.
机译:具有许多处理单元的最新图形处理单元(GPU)可用于通用并行计算。为了利用强大的计算能力,GPU被广泛用于通用处理。由于GPU具有很高的内存带宽,因此GPU的性能在很大程度上取决于内存访问。本文的主要贡献是提出一种具有高效内存访问能力的计算欧几里得距离图(EDM)的GPU实现。给定2-D二进制图像,EDM是相同大小的2-D数组,以使每个元素都存储到最近的黑色像素的欧几里德距离。在提出的GPU实施中,我们考虑了GPU系统的许多编程问题,例如合并对全局内存的访问,共享内存库冲突和分区预占。实际上,我们已在以下两个现代GPU系统中分别实现了并行算法:Tesla C1060和GTX 480。实验结果表明,对于大小为$ 9216×9216 $的输入二进制图像,我们的实现比顺序算法实现的加速因子为52。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号