首页> 外文会议>2011 IEEE Workshop on Automatic Speech Recognition amp; Understanding >Employing web search query click logs for multi-domain spoken language understanding
【24h】

Employing web search query click logs for multi-domain spoken language understanding

机译:使用网络搜索查询单击日志以了解多域口语

获取原文
获取原文并翻译 | 示例

摘要

Logs of user queries from a search engine (such as Bing or Google) together with the links clicked provide valuable implicit feedback to improve statistical spoken language understanding (SLU) models. In this work, we propose to enrich the existing classification feature set for domain detection with features computed using the click distribution over a set of clicked URLs from search query click logs (QCLs) of user utterances. Since the form of natural language utterances differs stylistically from that of keyword search queries, to be able to match natural language utterances with related search queries, we perform a syntax-based transformation of the original utterances, after filtering out domain-independent salient phrases. This approach results in significant improvements for domain detection, especially when detecting the domains of web-related user utterances.
机译:来自搜索引擎(例如Bing或Google)的用户查询日志以及单击的链接提供了有价值的隐式反馈,以改善统计口语理解(SLU)模型。在这项工作中,我们建议使用在用户话语的搜索查询点击日志(QCL)中的一组点击URL上使用点击分布计算出的功能,来丰富用于域检测的现有分类功能集。由于自然语言话语的形式在样式上与关键字搜索查询的形式不同,为了能够将自然语言话语与相关的搜索查询匹配,我们在过滤掉与域无关的显着短语之后对原始话语进行基于语法的转换。这种方法可显着改善域检测,尤其是在检测与Web相关的用户话语域时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号