首页> 外文会议>2010 IEEE International Symposium on Parallel amp; Distributed Processing (IPDPS) >Head-body partitioned string matching for Deep Packet Inspection with scalable and attack-resilient performance
【24h】

Head-body partitioned string matching for Deep Packet Inspection with scalable and attack-resilient performance

机译:头主体分区字符串匹配,可进行深度包检查,具有可扩展的性能和抗攻击能力

获取原文
获取原文并翻译 | 示例

摘要

Dictionary-based string matching (DBSM) is a critical component of Deep Packet Inspection (DPI), where thousands of malicious patterns are matched against high-bandwidth network traffic. Deterministic finite automata constructed with the Aho-Corasick algorithm (AC-DFA) have been widely used for solving this problem. However, the state transition table (STT) of a large-scale DBSM AC-DFA can span hundreds of megabytes of system memory, whose limited bandwidth and long latency could become the performance bottleneck We propose a novel partitioning algorithm which converts an AC-DFA into a ¿head¿ and a ¿body¿ parts. The head part behaves as a traditional AC-DFA that matches the pattern prefixes up to a predefined length; the body part extends any head match to the full pattern length in parallel body-tree traversals. Taking advantage of the SIMD instructions in modern x86-64 multi-core processors, we design compact and efficient data structures packing multi-path and multi-stride pattern segments in the body-tree. Compared with an optimized AC-DFA solution, our head-body matching (HBM) implementation achieves 1.2x to 3x throughput performance when the input match (attack) ratio varies from 2% to 32%, respectively. Our HBM data structure is over 20x smaller than a fully-populated AC-DFA for both Snort and ClamAV dictionaries. The aggregated throughput of our HBM approach scales almost 7x with 8 threads to over 10 Gbps in a dual-socket quad-core Opteron (Shanghai) server.
机译:基于字典的字符串匹配(DBSM)是深度数据包检查(DPI)的关键组件,其中数千种恶意模式与高带宽网络流量进行了匹配。用Aho-Corasick算法(AC-DFA)构造的确定性有限自动机已广泛用于解决此问题。但是,大型DBSM AC-DFA的状态转换表(STT)可以跨越数百兆的系统内存,其有限的带宽和长的等待时间可能成为性能瓶颈。我们提出了一种新颖的分区算法,该算法可以转换AC-DFA分为一个â,head,Â,和一个,,¿body﹑¿零件。头部的行为类似于传统的AC-DFA,它与模式前缀匹配的长度最大为预定义的长度。身体部位在平行的身体树遍历中将任何头部匹配延伸到整个图案长度。利用现代x86-64多核处理器中的SIMD指令,我们设计了紧凑而有效的数据结构,将多路径和多步幅模式段封装在主体树中。与优化的AC-DFA解决方案相比,当输入匹配(攻击)比率分别从2%变为32%时,我们的头身匹配(HBM)实现方式实现了1.2倍至3倍的吞吐性能。对于Snort和ClamAV词典,我们的HBM数据结构比完全填充的AC-DFA小20倍以上。在双插槽四核皓龙(Shanghai)服务器中,我们的HBM方法的总吞吐量可通过8个线程扩展近7倍,达到10 Gbps以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号