首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Robust and Scalable String Pattern Matching for Deep Packet Inspection on Multicore Processors
【24h】

Robust and Scalable String Pattern Matching for Deep Packet Inspection on Multicore Processors

机译:健壮且可扩展的字符串模式匹配,可在多核处理器上进行深度数据包检查

获取原文
获取原文并翻译 | 示例

摘要

Conventionally, dictionary-based string pattern matching (SPM) has been implemented as Aho-Corasick deterministic finite automaton (AC-DFA). Due to its large memory footprint, a large-dictionary AC-DFA can experience poor cache performance when matching against inputs with high match ratio on multicore processors. We propose a head-body finite automaton (HBFA), which implements SPM in two parts: a head DFA (H-DFA) and a body NFA (B-NFA). The H-DFA matches the dictionary up to a predefined prefix length in the same way as AC-DFA, but with a much smaller memory footprint. The B-NFA extends the matching to full dictionary lengths in a compact variable-stride branch data structure, accelerated by single-instruction multiple-data (SIMD) operations. A branch grafting mechanism is proposed to opportunistically advance the state of the H-DFA with the matching progress in the B-NFA. Compared with a fully populated AC-DFA, our HBFA prototype has $({<} 1/5)$ construction time, requires $({<} 1/20)$ runtime memory, and achieves 3x to 8x throughput when matching real-life large dictionaries against inputs with high match ratios. The throughput scales up 27x to over 34 Gbps on a 32-core Intel Manycore Testing Lab machine based on the Intel Xeon X7560 processors.
机译:常规上,基于字典的字符串模式匹配(SPM)已实现为Aho-Corasick确定性有限自动机(AC-DFA)。由于其内存占用量大,当与多核处理器上具有高匹配率的输入进行匹配时,大型词典AC-DFA可能会遇到较差的缓存性能。我们提出了一个头身有限自动机(HBFA),它实现了SPM的两个部分:一个头DFA(H-DFA)和一个NFA主体(B-NFA)。 H-DFA以与AC-DFA相同的方式将字典匹配到预定义的前缀长度,但内存占用量要小得多。 B-NFA在紧凑的跨步分支数据结构中将匹配扩展到完整的字典长度,并通过单指令多数据(SIMD)操作加快了速度。提出了一种分支接枝机制,以期随着B-NFA的匹配进展而适时地促进H-DFA的状态。与完全填充的AC-DFA相比,我们的HBFA原型具有$ {{{} 1/5)$的构建时间,需要$ {{<} 1/20)$的运行时内存,并且在匹配实数时,吞吐量达到3到8倍对匹配率高的输入使用大型词典。在基于Intel Xeon X7560处理器的32核Intel Manycore Testing Lab计算机上,吞吐量可提高27倍,达到34 Gbps以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号