【24h】

3-D Model Matching Based on Distributed Estimation Algorithm

机译:基于分布式估计算法的3-D模型匹配

获取原文

摘要

In a three-dimensional (3-D) model-based objects tracking and recognition system, the key problem of objects location is to establish the relationship between 2-D objects image and 3-D model. Based on 3-D model projection and 2-D image feature extraction, a modified Hausdorff distance is used to establish the matching function. The relationship between matching parameters are described with a probability model, and the distribution of parameter evolves towards the direction of dominant character through probability model learning and the corresponding operation, which is proposed to solve the problem of overmany iteration and slow constringency velocity The experiments show that the optimal matching parameters between 3-D model and 2-D image feature can be found accurately and efficiently, and then the accurate object location is completed.
机译:在基于三维(3-D)模型的对象跟踪和识别系统中,对象位置的关键问题是建立2-D对象图像与3-D模型之间的关系。基于3D模型投影和2D图像特征提取,使用修正的Hausdorff距离建立匹配函数。通过概率模型描述匹配参数之间的关系,并通过概率模型学习和相应的操作,使参数的分布向着显性方向发展,从而解决了迭代次数过多和收敛速度慢的问题。可以准确高效地找到3-D模型与2-D图像特征之间的最佳匹配参数,从而完成对物体的准确定位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号