【24h】

LOW TEMPERATURE ANODIC BONDING FOR MEMS APPLICATIONS

机译:MEMS应用的低温阳极键合

获取原文
获取原文并翻译 | 示例

摘要

In this paper, anodic bonding between silicon wafer and glass wafer (Pyrex 7740) has been successfully achieved at low temperature. The bonding strength is measured using a tensile testing machine. The interfaces are examined and analyzed by scanning acoustic microscopy (SAM), scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). Prior to bonding, the wafers are cleaned in RCA solutions, and the surfaces become hydrophilic. The effects of the bonding parameters, such as bonding temperature, voltage, bonding time and vacuum condition, on bonding quality are investigated using Taguchi method, and the feasibility of bonding silicon and glass wafers at low temperature is explored. The bonding temperature used ranges from 200℃ to 300 ℃. The sensitivity of the bonding parameters is analyzed and it is found that the bonding temperature is the dominant factor for the bonding process. Therefore, the effects of bonding temperature are investigated in detail. High temperatures cause high ion mobility and bonding current density, resulting in the short transition period to the equilibrium state. Almost bubble-free interfaces have been obtained. The bonded area increases with increasing the bonding temperature. The unbonded area is less than 1.5% within the whole wafer for bonding temperature between 200℃ to 300℃. The bonding strength is higher than 10 MPa, and increases with the bonding temperature. Fracture mainly occurs inside the glass wafer other than in the interface when the bonding temperature is higher than 225℃. SIMS results show that the chemical bonds of Si-O form in the interface. Higher bonding temperature results in more oxygen migration to the interface and more Si-O bonds. The bonding mechanisms consist of hydrogen bonding and Si-O chemical reaction.
机译:本文成功地在低温下成功实现了硅晶片和玻璃晶片(Pyrex 7740)之间的阳极键合。使用拉伸试验机测量粘合强度。通过扫描声学显微镜(SAM),扫描电子显微镜(SEM)和二次离子质谱(SIMS)对界面进行检查和分析。在键合之前,将晶片在RCA溶液中清洗,并且表面变为亲水性。利用Taguchi方法研究了键合温度,电压,键合时间和真空条件等键合参数对键合质量的影响,并探讨了在低温下键合硅和玻璃晶圆的可行性。使用的粘合温度范围为200℃至300℃。分析了键合参数的敏感性,发现键合温度是键合过程的主要因素。因此,详细研究了粘合温度的影响。高温导致高离子迁移率和键合电流密度,从而导致过渡到平衡状态的时间很短。已经获得了几乎无气泡的界面。结合面积随着结合温度的升高而增加。在200℃至300℃的粘接温度下,整个晶片的未粘接面积小于1.5%。结合强度高于10MPa,并且随着结合温度而增加。当键合温度高于225℃时,断裂主要发生在玻璃晶片内部而不是界面处。 SIMS结果表明,Si-O的化学键在界面形成。较高的键合温度导致更多的氧气迁移到界面和更多的Si-O键。结合机理包括氢键和Si-O化学反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号