首页> 外文会议>19th international symposium on high performance distributed computing 2010 >MPIPairwiseStatSig: Parallel Pairwise Statistical Significance Estimation of Local Sequence Alignment
【24h】

MPIPairwiseStatSig: Parallel Pairwise Statistical Significance Estimation of Local Sequence Alignment

机译:MPIPairwiseStatSig:局部序列比对的并行成对统计意义估计

获取原文
获取原文并翻译 | 示例

摘要

Sequence comparison is considered as a cornerstone application in bioinformatics, which forms the basis of many other applications. In particular, pairwise sequence alignment is a fundamental step in numerous sequence comparison based applications, where the typical purpose of pairwise sequence alignment step is homology detection, i.e., identifying related sequences. Estimation of statistical significance of a pairwise sequence alignment is crucial in homology detection. A recent development in the field is the use of pairwise statistical significance as an alternative to database statistical significance. Although pairwise statistical significance has been shown to be potentially superior than database statistical significance for homology detection (evaluated in terms of retrieval accuracy), currently it is much time consuming since it involves generating an empirical score distribution by aligning one sequence of the sequence-pair with N random shuffles of the other sequence. In this paper, we present a parallel algorithm for pairwise statistical significance estimation, called MPIPairwiseStatSig, implemented in C using MPI. Distributing the most compute-intensive portions of the pairwise statistical significance estimation procedure across multiple processors has been shown to result in near-linear speed-ups for the application.
机译:序列比较被认为是生物信息学中的基础应用,它构成了许多其他应用的基础。特别地,成对序列比对是许多基于序列比较的应用中的基本步骤,其中成对序列比对步骤的典型目的是同源性检测,即鉴定相关序列。在同源性检测中,成对序列比对的统计显着性估计至关重要。该领域的最新发展是使用成对统计意义作为数据库统计意义的替代。尽管已显示成对的统计意义可能比同源性检测的数据库统计意义(根据检索准确度进行评估)潜在地优越,但是由于涉及通过对齐序列对中的一个序列来产生经验分数分布,因此目前仍很耗时与其他序列的N个随机洗牌。在本文中,我们提出了一种使用MPI在C语言中实现的用于成对统计显着性估计的并行算法,称为MPIPairwiseStatSig。已经显示,在多个处理器之间分布成对统计显着性估计过程中计算量最大的部分会导致应用程序接近线性加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号