首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >Pairwise Statistical Significance of Local Sequence Alignment Using Sequence-Specific and Position-Specific Substitution Matrices
【24h】

Pairwise Statistical Significance of Local Sequence Alignment Using Sequence-Specific and Position-Specific Substitution Matrices

机译:使用序列特定和位置特定的替换矩阵进行局部序列比对的成对统计意义

获取原文
获取原文并翻译 | 示例

摘要

Pairwise sequence alignment is a central problem in bioinformatics, which forms the basis of various other applications. Two related sequences are expected to have a high alignment score, but relatedness is usually judged by statistical significance rather than by alignment score. Recently, it was shown that pairwise statistical significance gives promising results as an alternative to database statistical significance for getting individual significance estimates of pairwise alignment scores. The improvement was mainly attributed to making the statistical significance estimation process more sequence-specific and database-independent. In this paper, we use sequence-specific and position-specific substitution matrices to derive the estimates of pairwise statistical significance, which is expected to use more sequence-specific information in estimating pairwise statistical significance. Experiments on a benchmark database with sequence-specific substitution matrices at different levels of sequence-specific contribution were conducted, and results confirm that using sequence-specific substitution matrices for estimating pairwise statistical significance is significantly better than using a standard matrix like BLOSUM62, and than database statistical significance estimates reported by popular database search programs like BLAST, PSI-BLAST (without pretrained PSSMs), and SSEARCH on a benchmark database, but with pretrained PSSMs, PSI-BLAST results are significantly better. Further, using position-specific substitution matrices for estimating pairwise statistical significance gives significantly better results even than PSI-BLAST using pretrained PSSMs.
机译:成对序列比对是生物信息学中的一个主要问题,它构成了其他各种应用的基础。预期两个相关序列具有较高的比对得分,但通常通过统计显着性而非比对得分来判断相关性。最近,研究表明,成对统计显着性给出了有希望的结果,可以替代数据库统计显着性,以获得成对比对得分的个体显着性估计。改进主要归因于使统计显着性估计过程更加特定于序列且与数据库无关。在本文中,我们使用序列特定和位置特定的替换矩阵来得出成对统计显着性的估计值,这有望在估计成对统计显着性时使用更多的序列特定信息。在基准数据库上进行了具有不同水平序列特异性贡献的序列特异性取代矩阵的实验,结果证实,使用序列特异性取代矩阵估计成对的统计显着性明显优于使用标准矩阵(如BLOSUM62),并且由基准数据库上的流行数据库搜索程序(例如BLAST,PSI-BLAST(无预先训练的PSSM)和SSEARCH)报告的数据库统计显着性估计,但使用预先训练的PSSM,PSI-BLAST结果要好得多。此外,与使用预训练的PSSM的PSI-BLAST相比,使用位置特定的替换矩阵估计成对的统计显着性可以获得明显更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号