【24h】

Kim: A new structure for optimization problems

机译:Kim:优化问题的新结构

获取原文
获取原文并翻译 | 示例

摘要

The multi-objective optimization algorithms are used as the best optimizer in many design issues. One of the main challenge for these algorithms is that increasing the number of objective functions leads poor performing of the algorithm. Reducing the selection pressure is the main reason of this phenomenon. In order to overcome this problem, the population diversity should be controlled. In this regard, this study developed a new evolutionary algorithm through resolving this dilemma. In the proposed method, a measure is considered for estimating the diversity of individuals in the population to adaptively control the rate of population diversity. A new fitness evaluation is also provided in this paper for assessing the fitness of chromosomes. So in this schema the selection of chromosomes is based on their contribution to population diversity in addition to being based on their fitness. The obtained results proved that the performance of the proposed algorithm has been improved through various tests. It is worth noting that the potential of the proposed method is examined on the most recent test function that presented in this field.
机译:在许多设计问题中,多目标优化算法被用作最佳优化器。这些算法的主要挑战之一是增加目标函数的数量会导致算法性能不佳。降低选择压力是此现象的主要原因。为了克服这个问题,应该控制人口多样性。对此,本研究通过解决这一难题开发了一种新的进化算法。在提出的方法中,考虑了一种用于估计人口中个体多样性的措施,以自适应地控制人口多样性的速率。本文还提供了一种新的适应性评估,用于评估染色体的适应性。因此,在此方案中,染色体的选择除了基于适合度之外,还基于它们对种群多样性的贡献。获得的结果证明,通过各种测试,改进了算法的性能。值得注意的是,该方法的潜力已在该领域中最新的测试功能上得到了检验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号