【24h】

IRON OXIDATION STATE OF HYDROUS BASALTIC GLASS: TIME-DEPENDENT INTENSITY FLANK METHOD

机译:水合玄武玻璃的铁氧化态:时间依赖强度侧翼法

获取原文
获取原文并翻译 | 示例

摘要

The ferric-ferrous ratio of magmas controls phase relations, melt physical properties (e.g., viscosity and density) and volatile solubility and can be linked to the oxygen fugacity of the melt. Melt inclusions are small pockets of melt trapped inside crystals during the ascent of the magma that can be used as a window into the pre-eruptive conditions of the magma. Many of these melt inclusions are small (< 20 μm, Fig. 1) precluding measurement of the ferric-ferrous ratio by bulk techniques such as wet chemistry, calorimetry or Mossbauer spectroscopy. XANES is able to analyse such melt inclusions but this involves access to a synchrotron which is not widely available. A technique for measuring the iron oxidation state using the electron microprobe would be useful due to its availability and high spatial resolution. The position and height of the Fe La- and LP-peaks are related to the total Fe concentration and oxidation state of the glass [1]. EPMA techniques for measuring the oxidation state of Fe in minerals and glasses use either the Peak Position [2] or the Flank Method [2] by calibrating a set of independently constrained standards. Unfortunately, hydrous basaltic glass is unstable under the beam conditions required to measure the Fe L-peaks and the glass tends to change oxidation state during analysis [3]. Large glass samples can be analysed with either the Peak Position or Flank Method techniques by spreading the beam power across the sample (using either multiple points or stage movement) to reduce beam damage. This is not possible for melt inclusions due to their size. Instead, the Fe Lβ/α-ratio (Flank Method) can be measured over time using multiple spectrometers and interpolated to time = 0 for a single spot analysis (Fig. 2). A set of glasses with various bulk compositions, water contents and oxidation states were measured using EPMA. The iron oxidation state of these glasses had been independently constrained by XANES, wet chemistry or Mossbauer spectroscopy. Analytical conditions were an accelerating voltage of 15 kV, a beam current of 50 nA and a spot size of 10 μm. Two TAP crystals were used to measure the Fe La-peak, a single TAPH crystal for the Fe Lβ and a LIFL for the Fe Ka-peak. Analyses were repeated ten times per glass. Results of the EPMA derived Fe(II)/FeT agree favourably with the other techniques (Fig. 3).
机译:岩浆的铁-铁比控制相关系,熔体物理性质(例如粘度和密度)和挥发性溶解度,并可与熔体的氧逸度有关。熔体包裹体是在岩浆上升期间被困在晶体内部的小熔体口袋,可用作进入岩浆喷发前状态的窗口。这些熔体中的许多夹杂物很小(<20μm,图1),无法通过湿法化学,量热法或Mossbauer光谱等本体技术测量铁-铁比。 XANES能够分析此类熔体夹杂物,但这需要使用同步加速器,而同步加速器目前尚未广泛使用。由于其可用性和高空间分辨率,使用电子探针测量铁氧化态的技术将很有用。 Fe La峰和LP峰的位置和高度与玻璃中的总Fe浓度和氧化态有关[1]。 EPMA技术用于测量矿物质和玻璃中Fe的氧化态,通过校准一组独立约束的标准,使用“峰位置” [2]或“侧面法” [2]。不幸的是,含水玄武玻璃在测量Fe L峰所需的光束条件下是不稳定的,并且玻璃在分析过程中倾向于改变氧化态[3]。大型玻璃样品可以使用“峰位”或“侧面法”技术进行分析,方法是将光束功率分布在整个样品上(使用多个点或载物台移动)以减少光束损伤。由于熔体夹杂物的尺寸,这是不可能的。取而代之的是,可以使用多个光谱仪随时间测量FeLβ/α比率(Flank方法),并内插到时间= 0进行单点分析(图2)。使用EPMA测量了一组具有各种体积组成,水含量和氧化态的玻璃。这些玻璃的铁氧化态已通过XANES,湿化学或Mossbauer光谱法独立约束。分析条件是加速电压为15 kV,束电流为50 nA,光斑尺寸为10μm。两个TAP晶体用于测量Fe La峰,一个FePH单个TAPH晶体,Fe Ka峰一个LIFL。每个玻璃杯重复分析十次。 EPMA衍生的Fe(II)/ FeT的结果与其他技术相吻合(图3)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号