首页> 外国专利> MACHINE-LEARNING TECHNIQUES FOR AUTOMATICALLY IDENTIFYING TOPS OF GEOLOGICAL LAYERS IN SUBTERRANEAN FORMATIONS

MACHINE-LEARNING TECHNIQUES FOR AUTOMATICALLY IDENTIFYING TOPS OF GEOLOGICAL LAYERS IN SUBTERRANEAN FORMATIONS

机译:用于自动识别地下构造中地质层顶部的机器学习技术

摘要

Tops of geological layers can be automatically identified using machine-learning techniques as described herein. In one example, a system can receive well log records associated with wellbores drilled through geological layers. The system can generate well clusters by applying a clustering process to the well log records. The system can then obtain a respective set of training data associated with a well cluster, train a machine-learning model based on the respective set of training data, select a target well-log record associated with a target wellbore of the well cluster, and provide the target well-log record as input to the trained machine-learning model. Based on an output from the trained machine-learning model, the system can determine the geological tops of the geological layers in a region surrounding the target wellbore. The system may then transmit an electronic signal indicating the geological tops of the geological layers associated with the target wellbore.
机译:如本文所述,可以使用机器学习技术自动识别地质层的顶部。在一个示例中,系统可以接收与在地质层中钻探的井眼关联的井日志记录。系统可以通过对井日志记录应用聚类过程来生成井集群。然后,系统可以获取与井集群关联的相应训练数据集,根据相应的训练数据集训练机器学习模型,选择与井集群的目标井眼关联的目标井日志记录,并提供目标井日志记录作为训练后的机器学习模型的输入。根据经过训练的机器学习模型的输出,该系统可以确定目标井筒周围区域中地质层的地质顶部。然后,系统可以传输一个电子信号,指示与目标井筒相关的地质层的地质顶部。

著录项

  • 公开/公告号EP4176356B1;EP2024004176356B1;EP4176356B1;EP4176356

    专利类型

  • 公开/公告日2024-10-09

    原文格式PDF

  • 申请/专利权人

    申请/专利号EP21936226.6;EP202100000936226A;EP21936226A;EP20210936226

  • 发明设计人

    申请日2021-09-22

  • 分类号E21B7;G01V20;G06N3/084;

  • 国家

  • 入库时间 2024-12-26 18:13:32

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号