首页> 外国专利> ADAPTIVE TASK COMMUNICATION BASED ON AUTOMATED LEARNING AND CONTEXTUAL ANALYSIS OF USER ACTIVITY

ADAPTIVE TASK COMMUNICATION BASED ON AUTOMATED LEARNING AND CONTEXTUAL ANALYSIS OF USER ACTIVITY

机译:基于自动学习和用户活动上下文分析的自适应任务通信

摘要

The techniques disclosed herein improve existing systems by automatically identifying tasks from a number of different types of user activity and providing suggestions for the tasks to one or more selected delivery mechanisms. A system compiles the tasks and pushes each task to a personalized task list of a user. The delivery of each task may be based on any suitable user activity, which may include communication between one or more users or a user's interaction with a particular file or a system. The system can identify timelines, performance parameters, and other related contextual data associated with the task. The system can identify a delivery schedule for the task to optimize the effectiveness of the delivery of the task. The system can also provide smart notifications. When a task conflicts with a person's calendar, the system can resolve scheduling conflicts based on priorities of a calendar event.
机译:本文公开的技术通过自动识别来自多个不同类型的用户活动的任务并向一个或多个选择的交付机制提供任务建议来改进现有系统。系统编译任务并将每个任务推送到用户的个性化任务列表中。每个任务的交付可基于任何合适的用户活动,其可包括一个或多个用户之间的通信或用户与特定文件或系统的交互。系统可以识别时间线、性能参数和其他与任务相关的上下文数据。系统可以确定任务的交付时间表,以优化任务交付的有效性。该系统还可以提供智能通知。当任务与个人日历冲突时,系统可以根据日历事件的优先级解决调度冲突。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号