首页> 外国专利> Persistent word vector input to multiple machine learning models

Persistent word vector input to multiple machine learning models

机译:持久词向量输入到多个机器学习模型

摘要

Word vectors are multi-dimensional vectors that represent words in a corpus of text and that are embedded in a semantically-encoded vector space. Word vectors can be used for sentiment analysis, comparison of the topic or content of sentences, paragraphs, or other passages of text or other natural language processing tasks. However, the generation of word vectors can be computationally expensive. Accordingly, when a set of word vectors is needed for a particular corpus of text, a set of word vectors previously generated from a corpus of text that is sufficiently similar to the particular corpus of text, with respect to some criteria, may be re-used for the particular corpus of text. Such similarity could include the two corpora of text containing the same or similar sets of words or containing incident reports or other time-coded sets of text from overlapping or otherwise similar periods of time.
机译:字矢量是表示文本语料库中的单词的多维向量,并且嵌入在语义编码的矢量空间中。 字向量可以用于情感分析,对文本或其他自然语言处理任务的句子,段落或其他段落的主题或内容的比较。 然而,单词矢量的产生可以是计算昂贵的。 因此,当针对特定文本语料库需要一组字向量时,一组先前从与特定文本语料库中获得的文本语料库的一组字矢量可以是可以重新的 用于特定的文本语料库。 这样的相似性可以包括包含相同或类似的单词或包含事件报告或其他时间编码文本组的两种文本或从重叠或其他时间段的文本组。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号