首页> 外国专利> DEEP LEARNING-BASED METHOD FOR PREDICTING BINDING AFFINITY BETWEEN HUMAN LEUKOCYTE ANTIGENS AND PEPTIDES

DEEP LEARNING-BASED METHOD FOR PREDICTING BINDING AFFINITY BETWEEN HUMAN LEUKOCYTE ANTIGENS AND PEPTIDES

机译:基于深度学习的方法,用于预测人白细胞抗原与肽之间的结合亲和力

摘要

A deep learning-based method for predicting a binding affinity between human leukocyte antigens (HLAs) and peptides includes: step S101: encoding HLA sequences; step S102: constructing a sequence of an HLA-peptide pair; step S103: constructing an encoding matrix of the HLA-peptide pair; step S104: constructing an affinity prediction model for HLA-peptide binding. The new method considers the effects of the protein sequences of HLAs and the sequences of the peptides on affinity strength and develops a deep learning-based method for predicting a binding affinity between HLAs and peptides.
机译:一种基于深度学习的方法,用于预测人白细胞抗原(HLA)和肽之间的结合亲和力包括:步骤S101:编码HLA序列; 步骤S102:构建HLA肽对的序列; 步骤S103:构建HLA肽对的编码基质; 步骤S104:构建HLA肽结合的亲和预测模型。 新方法考虑了HLA的蛋白质序列和肽的序列对亲和强度的影响,并产生了一种基于深度学习的方法,用于预测HLA和肽之间的结合亲和力。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号