An analysis system and method for predicting power consumption by learning operation data are provided. The method includes the steps of: generating, by a power data management server, standard operation data using operation data including operation power data corresponding to operation performance data; And generating, by the power data management server, predicted operating power data by analyzing power consumption for each process and power consumption for each item based on the standard operating data, including, but generating the predicted operating power data, Calculating a correlation coefficient by analyzing, by the power data management server, a correlation between variable data affecting the operating power data and the operating power data; Calculating, by the power data management server, a regression coefficient including an independent variable and a dependent variable using the variable data based on the correlation coefficient; Generating cluster data by standardizing and clustering data having similarity among the regression coefficients, by the power data management server; Generating, by the power data management server, power usage section data by cross-analyzing the operating power data and the cluster data; And generating, by the power data management server, the predicted operating power data by analyzing the power consumption section data for each process and the power consumption for each item.
展开▼
机译:提供了一种通过学习操作数据预测功耗的分析系统和方法。该方法包括以下步骤:通过电力数据管理服务器,使用包括与操作性能数据对应的操作的操作数据的标准操作数据;由电力数据管理服务器产生通过分析基于标准操作数据的每个项目的功耗和每个项目的功耗,包括但生成预测的操作功率数据,通过分析计算相关系数来预测操作功率数据。通过分析计算相关系数由电力数据管理服务器,影响操作电源数据和操作电源数据之间的可变数据之间的相关性;由电力数据管理服务器计算回归系数,包括使用变量数据的独立变量和基于相关系数的变量;通过Power Data Management Server通过标准化和聚类具有相似性的数据来生成群集数据;通过电量数据管理服务器通过交叉分析操作电源数据和群集数据来生成电源部分数据;通过电力数据管理服务器产生预测的操作电力数据,通过分析每个过程的功耗部分数据和每个项目的功耗。
展开▼