首页> 外国专利> System neural network learning.

System neural network learning.

机译:系统神经网络学习。

摘要

DESCRIBED LEARNING SYSTEM NEURAL NETWORK IN WHICH HAS BEEN AN INTERFERED input-output relationship. THE LEARNING SYSTEM NETWORK NEURAL includes a portion (12) PROBABILITY DENSITY FOR DETERMINING A PROBABILITY DENSITY ON SPACE SUM OF SPACE ENTRY AND SPACE OUT FROM A SET OF SAMPLES IN AND OUT GIVEN BY LEARNING It is defined probability density on Space SUMA to have a parameter, and a portion (13) INTERFERENCE FOR DETERMINING probability density function based upon the probability density FROM PART OF pROBABILITY DENSITY SO THAT THE RELATIONSHIP IN-OUT OF sAMPLES IS INTERREFERIDA A FINDS FROM probability density function HAVING A dETERMINATION parameter value by LEARNING TO BE REPEATED LEARNING setting until VALUE OF DIFFERENTIAL fUNCTION pARAMETER DEFAULT PROBABILITY using a method previously described MAXIMA IS SMALLER THAN A VALUE OF RE PREVIOUSLY DESCRIBED ference.
机译:受到干扰的输入输出关系中描述的学习系统神经网络。学习系统神经网络包括部分(12)概率密度,用于通过学习从一组样本进出中确定空间进入和空间出的空间总和上的概率密度。在空间SUMA上定义概率密度并具有参数(13)根据概率密度函数的概率密度确定概率密度函数的一部分干扰,即样本的输入与输出之间的相互关系是概率密度函数的结果,通过学习重复确定参数值使用之前描述的方法进行的学习设置,直到微分功能参数默认概率的值比先前描述的参考值小。

著录项

  • 公开/公告号ES2132180T3

    专利类型

  • 公开/公告日1999-08-16

    原文格式PDF

  • 申请/专利权人 RICOH COMPANY LTD;

    申请/专利号ES19930300611T

  • 发明设计人 WATANABE SUMIO;FUKUMIZU KENJI;

    申请日1993-01-28

  • 分类号G06F15/80;

  • 国家 ES

  • 入库时间 2022-08-22 02:24:25

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号