首页> 外文会议>Workshop on figurative language processing 2018 >Multi-Module Recurrent Neural Networks with Transfer Learning. A Submission for the Metaphor Detection Shared Task
【24h】

Multi-Module Recurrent Neural Networks with Transfer Learning. A Submission for the Metaphor Detection Shared Task

机译:具有转移学习功能的多模块递归神经网络。隐喻检测共享任务的提交

获取原文
获取原文并翻译 | 示例

摘要

This paper describes multiple solutions designed and tested for the problem of word-level metaphor detection. The proposed systems are all based on variants of recurrent neural network architectures. Specifically, we explore multiple sources of information: pre-trained word embeddings (Glove), a dictionary of language concreteness and a transfer learning scenario based on the states of an encoder network from neural network machine translation system. One of the architectures is based on combining all three systems: (1) Neural CRF (Conditional Random Fields), trained directly on the metaphor data set; (2) Neural Machine Translation encoder of a transfer learning scenario; (3) a neural network used to predict final labels, trained directly on the metaphor data set. Our results vary between test sets: Neural CRF standalone is the best one on submission data, while combined system scores the highest on a test subset randomly selected from training data.
机译:本文介绍了针对单词级隐喻检测问题设计和测试的多种解决方案。所提出的系统全部基于递归神经网络体系结构的变体。具体来说,我们探索多种信息来源:预训练词嵌入(Glove),语言具体性词典和基于来自神经网络机器翻译系统的编码器网络状态的转移学习方案。一种架构是基于将所有三个系统结合在一起的:(1)直接在隐喻数据集上训练的神经CRF(条件随机场); (2)转移学习场景的神经机器翻译编码器; (3)直接在隐喻数据集上训练的用于预测最终标签的神经网络。我们的结果在不同的测试集之间有所不同:神经CRF单机版是提交数据上最好的,而组合系统在从训练数据中随机选择的测试子集上得分最高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号