首页> 外国专利> KERNELS AND METHODS FOR SELECTING KERNELS FOR USE IN LEARNING MACHINES

KERNELS AND METHODS FOR SELECTING KERNELS FOR USE IN LEARNING MACHINES

机译:内核和用于学习机的内核选择方法

摘要

Kernels (206) for use in learning machines, such as support vector machines, and methods are provided for selection and construction of such kernels are controlled by the nature of the data to be analyzed (203). In particular, data which may possess characteristics such as structure, for example DNA sequences, documents; graphs, signals, such as ECG signals and microarray expression profiles; spectra; images; spatio-temporal data; and relational data, and which may possess invariances or noise components that can interfere with the ability to accurately extract the desired information. Where structured datasets are analyzed, locational kernels are defined to provide measures of similarity among data points (210). The locational kernels are then combined to generate the decision function, or kernel. Where invariance transformations or noise is present, tangent vectors are defined to identify relationships between the invariance or noise and the data points (222). A covariance matrix is formed using the tangent vectors, then used in generation of the kernel.
机译:用于学习机(例如支持向量机)的内核(206),并且提供了用于选择和构造这种内核的方法,该内核由要分析的数据的性质控制(203)。尤其是可能具有特征的数据,例如结构,例如DNA序列,文档;图形,信号,例如ECG信号和微阵列表达谱;光谱图片;时空数据关系数据,它们可能具有不变性或噪声成分,可能会干扰准确提取所需信息的能力。在分析结构化数据集的地方,定义位置核以提供数据点之间的相似性的量度(210)。然后将位置内核合并以生成决策函数或内核。在存在不变性变换或噪声的情况下,定义切线向量以识别不变性或噪声与数据点之间的关系(222)。使用切向量形成协方差矩阵,然后将其用于内核的生成。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号