首页> 外国专利> The process used for predictive control in artificial neural network su00ecnter machine

The process used for predictive control in artificial neural network su00ecnter machine

机译:人工神经网络机器中的预测控制过程

摘要

A process using artificial neural network for predictive control in su00ecnter.a production of sinter machine in accordance with the standards is of fundamental importance to the iron and steel industry because it depends on the economic productivity of blast furnaces and, consequently, the productivity D. And the whole plant.Although the improvement of sintering have economic meanings are of major economic importance and ecological, such as facilities of ore fines and coal tailings, exploitation of the mines and facilitation of mines whose ores has a tendency to produce large qty The ages of fine in the processes of crushing and grinding.The thermodynamic conditions of sintering process, require that the layer of pellets to be sintered to have level maintained within strict limits, which, if not obeyed, stops of slow recovery and non-compliance of materials, involving reprocessing and a u00e9rie of productivity losses.The big problem of the prior art that this patent is to advance is that the traditional controls the level of the hopper (5), aumentadora of sinter machine (6) have response times of about 250 seconds, time too long for a continuous operation and safe.The "process using artificial neural network for predictive control in machine of su00ecnter" object of this patent is the core of neuro fuzzy artificial intelligence software specific, supported, preferably by MATLAB tools and Adaline may, however, use inu00fa But other tools and platforms of the RNA.The RNA is trained to predict the level of filling of the hopper (5) 250 seconds or more, up front, in case your specific application.The artificial neural network was trained with the information process such eat the weights of materials (10) fed by the silos aumentadores of pellets (2), the density of the material (11), the production volume per unit of time (12), which led to the software specifies (9) enable The control of the system with an advance of 250 seconds or more.And this specific software (9) provides the interfaces (13) for the control panels and is connected with the database, in order to allow for learning continuous, since RNA can operate variable values that were supplied during the process of training.
机译:根据标准使用人工神经网络对烧结机进行预测控制的过程对钢铁行业至关重要,因为它取决于高炉的经济生产率,因此取决于生产率D.以及整个工厂。虽然提高烧结具有经济意义,并且在生态上具有重要的经济意义,例如矿粉和煤尾矿的设施,矿山的开采以及矿山易于产生大量矿石的矿山的便利化等。粉碎和磨碎过程中的细粒年龄。烧结过程的热力学条件要求将要烧结的丸粒层的水平保持在严格的限制内,如果不遵守,则会停止缓慢恢复和违规行为的材料,涉及到后处理和生产力损失。现有技术的一个大问题是该专利要提高传统的控制进料斗(5),烧结机的aumentadora(6)的水平具有大约250秒的响应时间,对于连续操作而言时间太长且安全。“使用人工神经网络进行预测控制的过程”该专利的“对象”机器中的神经元是特定的神经模糊人工智能软件的核心,最好由MATLAB工具支持,而Adaline可以在RNA的其他工具和平台中使用。经过培训,可以预测250秒钟或更长时间(在您的特定应用中)的料斗(5)的填充水平。使用信息过程对人工神经网络进行了培训,例如吃掉了料斗(10)的重量颗粒料仓(2),物料密度(11),每单位时间的生产量(12),导致软件指定(9)使系统控制提前250秒或以及更多特定的软件战争e(9)为控制面板提供了接口(13),并与数据库连接,以便允许连续学习,因为RNA可以操作在训练过程中提供的可变值。

著录项

  • 公开/公告号BRPI0604118A

    专利类型

  • 公开/公告日2008-04-29

    原文格式PDF

  • 申请/专利权人 GERDAU ACOMINAS S/A;

    申请/专利号BR2006PI04118

  • 发明设计人 EDUARDO SOARES FIGUEIREDO;

    申请日2006-09-11

  • 分类号G05B13/00;G06N7/02;

  • 国家 BR

  • 入库时间 2022-08-21 20:08:40

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号