首页> 外国专利> CLASSIFICATION MODEL TRAINING METHOD, AND DATA CLASSIFICATION METHOD AND DEVICE

CLASSIFICATION MODEL TRAINING METHOD, AND DATA CLASSIFICATION METHOD AND DEVICE

机译:分类模型训练方法,数据分类方法和装置

摘要

The present application discloses a classification model training method and device, in which a distance factor is introduced into a gradient loss function of an initial classification model. The distance factor represents a deviation between an actual class and a predicted class. In this way, when different classification errors occur, that is, if there are different degrees of deviation between predicted classes and actual classes, corresponding distance factors are different, resulting in different gradient loss functions, and thus resulting in different residuals between the actual classes and the predicted classes, as determined according to the gradient loss functions. Different sizes of residuals correspond to different degrees of classification error, such that the initial classification model can undergo targeted correction according to the different sizes of residuals, and accuracy of a classification model can be rapidly improved. Embodiments of the application further provide a corresponding data classification method and device.
机译:本申请公开了一种分类模型训练方法和装置,其中将距离因子引入初始分类模型的梯度损失函数中。距离因子表示实际类别和预测类别之间的偏差。这样,当发生不同的分类错误时,即预测类和实际类之间存在不同程度的偏差时,对应的距离因子就不同,从而导致梯度损失函数不同,从而导致实际类之间的残差也不同。根据梯度损失函数确定的预测类别。残差的不同大小对应于不同程度的分类误差,使得初始分类模型可以根据残差的不同大小进行有针对性的校正,可以快速提高分类模型的准确性。本申请实施例还提供了一种相应的数据分类方法和装置。

著录项

  • 公开/公告号WO2018107906A1

    专利类型

  • 公开/公告日2018-06-21

    原文格式PDF

  • 申请/专利权人 TENCENT TECHNOLOGY (SHENZHEN) COMPANY LIMITED;

    申请/专利号WO2017CN107626

  • 发明设计人 YIN HONGJUN;

    申请日2017-10-25

  • 分类号G06K9/62;

  • 国家 WO

  • 入库时间 2022-08-21 12:43:46

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号