首页> 外国专利> FULLY CONVOLUTIONAL NETWORK MODEL TRAINING METHOD FOR SPLITTING ABNORMAL SIGNAL REGION IN MRI IMAGE

FULLY CONVOLUTIONAL NETWORK MODEL TRAINING METHOD FOR SPLITTING ABNORMAL SIGNAL REGION IN MRI IMAGE

机译:分割MRI图像异常信号区域的全卷积网络模型训练方法

摘要

A fully convolutional network model training method for splitting an abnormal signal region in an MRI image. The method comprises: obtaining an MRI sample image, and obtaining an abnormal signal region split sample image obtained after an abnormal signal region split is performed on the MRI sample image (S101); initializing a weight parameter of a fully convolutional network model (S102); and training the fully convolutional network model by using the MRI sample image and the split sample image as training samples, so as to obtain the fully convolutional network model used for splitting an abnormal signal region in an MRI image (S103). The method can resolve the problem in the prior art of wrong splits due to very tedious and time consuming manual split marking that is easily affected by subjective factors, and a precise split result can be efficiently generated without any image preprocessing and postprocessing steps.
机译:一种用于在MRI图像中分割异常信号区域的全卷积网络模型训练方法。该方法包括:获取MRI样本图像;获取对MRI样本图像进行异常信号区域分割后得到的异常信号区域分割样本图像(S101);初始化全卷积网络模型的权重参数(S102);然后,以所述MRI样本图像和所述分割样本图像作为训练样本,对全卷积网络模型进行训练,得到用于在MRI图像中分割异常信号区域的全卷积网络模型(S103)。该方法可以解决由于非常繁琐且费时的容易受到主观因素影响的手动分割标记而导致的错误分割的现有技术中的问题,并且可以有效地生成精确的分割结果,而无需任何图像预处理和后处理步骤。

著录项

  • 公开/公告号WO2019109410A1

    专利类型

  • 公开/公告日2019-06-13

    原文格式PDF

  • 申请/专利权人 SHENZHEN BRAINNOW MEDICAL TECHNOLOGY CO. LTD.;

    申请/专利号WO2017CN118298

  • 发明设计人 MA DIYA;

    申请日2017-12-25

  • 分类号G06T7/11;G06N3/08;

  • 国家 WO

  • 入库时间 2022-08-21 11:54:28

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号