首页> 外国专利> LEARNING METHOD AND LEARNING DEVICE FOR INTEGRATING AN IMAGE ACQUIRED BY A CAMERA AND A POINT-CLOUD MAP ACQUIRED BY RADAR OR LIDAR IN A NEURAL NETWORK AND TESTING METHOD AND TESTING DEVICE USING THE SAME

LEARNING METHOD AND LEARNING DEVICE FOR INTEGRATING AN IMAGE ACQUIRED BY A CAMERA AND A POINT-CLOUD MAP ACQUIRED BY RADAR OR LIDAR IN A NEURAL NETWORK AND TESTING METHOD AND TESTING DEVICE USING THE SAME

机译:用于将相机获取的图像和雷达或激光雷达获取的点云图集成到神经网络中的学习方法和学习装置以及使用该方法的测试方法和测试设备

摘要

A method for integrating, at each convolution stage in a neural network, an image generated by a camera and its corresponding point-cloud map generated by a radar, a LiDAR, or a heterogeneous sensor fusion is provided to be used for an HD map update. The method includes steps of: a computing device instructing an initial operation layer to integrate the image and its corresponding original point-cloud map, to generate a first fused feature map and a first fused point-cloud map; instructing a transformation layer to apply a first transformation operation to the first fused feature map, and to apply a second transformation operation to the first fused point-cloud map; and instructing an integration layer to integrate feature maps outputted from the transformation layer, to generate a second fused point-cloud map. By the method, an object detection and a segmentation can be performed more efficiently with a distance estimation.
机译:提供一种用于在神经网络的每个卷积阶段集成由照相机生成的图像和由雷达,LiDAR或异构传感器融合生成的其对应点云图的方法,以用于HD地图更新。该方法包括以下步骤:计算设备指示初始操作层对图像及其对应的原始点云图进行积分,以生成第一融合特征图和第一融合点云图;以及指示变换层将第一变换操作应用于第一融合特征图,并将第二变换操作应用于第一融合点云图;指示整合层整合从转换层输出的特征图,以生成第二融合点云图。通过该方法,可以利用距离估计来更有效地执行对象检测和分割。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号