首页> 外国专利> AI DEGRADATION DETECTION SYSTEM USING ARTIFICIAL INTELLIGENCE

AI DEGRADATION DETECTION SYSTEM USING ARTIFICIAL INTELLIGENCE

机译:基于人工智能的人工智能降解检测系统

摘要

A damage detection system using AI is disclosed. The damage detection system using the AI includes: a field shot image storage unit for storing the divided shot images taken by zooming in a predetermined area over the entire target surface through a camera at a facility inspection site; Damage image storage unit for learning where images of damaged parts of the structure surface are collected and stored in advance, damage confusion image storage unit in which images of construction joints on the surface of structures that can be confused with damage are collected and stored in advance, structures without damage A deep learning module including an intact image storage unit in which surface images are collected and stored in advance, and an artificial neural network for learning based on the images stored in each storage unit so that damage detection performance is established; An image merging module for merging the split shot images stored in the field shot image storage unit to realize a large image in which the entire target surface is displayed; And a control unit for executing the deep learning module and the image merging module, and updating the split shot image captured at the facility inspection site to the field shot image storage unit; Substituting the split shot images updated in the field shot image storage unit into the deep learning module, and executing the deep learning module to detect a damaged part in each split shot image; Executing the image merging module to perform the step of merging each segmented image after detection of the damaged part is completed to implement a large image in which the entire target surface is displayed, and displaying the detected damaged part on the large image Characterized in that.
机译:公开了一种使用AI的损坏检测系统。使用AI的损伤检测系统包括:实地拍摄图像存储单元,用于存储通过在设施检查现场的照相机将整个目标表面上的预定区域放大而拍摄的分割拍摄图像;以及用于学习预先收集并存储结构表面的受损部分的图像的损坏图像存储单元,其中预先收集并存储可以与损坏相混淆的结构表面上的施工缝图像的损坏混淆图像存储单元。 ,无损坏的结构深度学习模块,包括一个完整的图像存储单元,该表面存储单元预先收集并存储了表面图像;以及一个人工神经网络,用于基于存储在每个存储单元中的图像进行学习,从而建立了损坏检测性能;图像合并模块,用于合并存储在野外拍摄图像存储单元中的分割后的拍摄图像,以实现显示整个目标表面的大图像;控制单元,用于执行深度学习模块和图像合并模块,并将在设施检查现场捕获的分割镜头图像更新为现场镜头图像存储单元;将在实地拍摄图像存储单元中更新的分割镜头图像替换为深度学习模块,并执行深度学习模块以检测每个分割镜头图像中的损坏部分;执行图像合并模块以执行在完成对受损部分的检测之后合并每个分割图像的步骤,以实现其中整个目标表面被显示的大图像,并且在所表征的大图像上显示检测到的受损部分。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号