首页> 中国专利> 多旋转关节机器人末端效应器位姿相关动力学的预测方法

多旋转关节机器人末端效应器位姿相关动力学的预测方法

摘要

本发明公开了一种多旋转关节机器人末端效应器位姿相关动力学的预测方法,包括建立含单旋转关节连杆的末端频率响应函数矩阵的预测模型A;基于含单旋转关节连杆的末端频率响应函数矩阵的预测模型A,建立多旋转关节机器人末端效应器的位姿相关动力学预测模型B;通过模态锤击法获取全因子三水平试验中各位姿下的末端效应器在其自身坐标系下的频响张量,并通过多旋转关节机器人末端效应器的位姿相关动力学预测模型解析地预测任意位姿状态下多旋转关节机器人末端效应器频响函数。本发明建立多旋转关节机器人的位姿相关动力学进行建模预测,为后期的多旋转关节机器人的位姿相关动力学的数字双胞胎建立以及颤振抑制应用提供技术支撑。

著录项

  • 公开/公告号CN114880888A

    专利类型发明专利

  • 公开/公告日2022-08-09

    原文格式PDF

  • 申请/专利权人 四川大学;

    申请/专利号CN202210796762.1

  • 申请日2022-07-08

  • 分类号G06F30/20(2020.01);G06F17/16(2006.01);G06F119/14(2020.01);

  • 代理机构成都乐易联创专利代理有限公司 51269;

  • 代理人赵何婷

  • 地址 610000 四川省成都市一环路南一段24号

  • 入库时间 2023-06-19 16:20:42

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-09-09

    授权

    发明专利权授予

  • 2022-08-26

    实质审查的生效 IPC(主分类):G06F30/20 专利申请号:2022107967621 申请日:20220708

    实质审查的生效

  • 2022-08-09

    公开

    发明专利申请公布

说明书

技术领域

本发明属于加工机器人振动控制中的末端效应器动态特性建模与预测领域,具体涉及一种多旋转关节机器人末端效应器位姿相关动力学的建模预测方法。

背景技术

随着工业机器人的精度、负载能力和灵活性从技术进步中受益,机器人因其覆盖空间广、成本低、操作灵活等优点逐渐取代了传统机床在众多加工应用中的地位。然而,由于机器人的刚性远低于传统机床,因此在静态和动态偏转时易违反被加工零件的尺寸及表面光洁度公差。为提高精度,学者和相关厂商开发了校准方法、过程优化方法和补偿方法,这些方法克服了静态挠度,但动态挠度引起的机械振动还是会限制生产率。

机械振动发生在所有的加工过程中,若振动失控,会导致被加工零件表面光洁度差、生产率低、刀具损坏,甚至降低加工设备的使用寿命。加工过程中会产生两种振动:强迫振动和自激振动。自激振动不理想,也不可控;一旦自激振动产生的能量累积,加工过程变得不稳定,就会发生颤振。稳定波瓣图定义为稳定切削和不稳定切削之间的边界,它取决于加工设备系统的频率响应函数。因此,在工业革命4.0的背景下,一个可行的频率响应函数预测模型或者一个描述工业机器人末端效应器频率响应函数的数字孪生模型对于加工机器人行业来说是必不可少的。由于加工机器人的笛卡尔刚度矩阵强烈依赖于其姿态,因此其频率响应函数依赖于加工机器人姿态,所以描述加工机器人末端效应器频率响应函数的建模预测方法应该考虑加工机器人姿态的影响。

机器人末端效应器位姿相关动力学的预测模型分为两类:解析预测模型和数据驱动预测模型,解析预测模型基于加工机器人连杆和关节刚度或前几阶模态参数,因此仅能在前几阶模态的频率范围内保持精度;数据驱动预测模型忽略了输入数据之间的关系,导致其需要过多的实验,难以拓展到预测多旋转关节机器人的位姿相关动力学;并且这两种模型都需要根据实验频率响应函数提前识别模态参数;由于实验频率响应函数的复杂性很难确定每一阶的模态参数。

发明内容

本发明的目的在于提供一种多旋转关节机器人末端效应器位姿相关动力学的预测方法,该方法采用一个三轴加速度传感器测得的实验频率响应函数,并对多旋转关节机器人的位姿相关动力学进行建模预测,易于编程实现,为后期的多旋转关节机器人的位姿相关动力学的数字双胞胎建立以及颤振抑制应用提供技术支撑。

为实现上述目的,本发明采用如下技术方案:

一种多旋转关节机器人末端效应器位姿相关动力学的预测方法,包括如下步骤:

步骤1:根据子结构耦合理论建立含单旋转关节连杆的末端频率响应函数矩阵的预测模型A,预测模型A如下:

预测模型A中,H(*)为末端坐标系下的末端频率响应函数矩阵,G(*)为关节坐标系下的末端频率响应函数矩阵,*为旋转关节的旋转角度;g

R为末端坐标系向旋转关节坐标系转换的旋转矩阵;h

步骤2:依据递归思想,基于含单旋转关节连杆的末端频率响应函数矩阵的预测模型A,建立多旋转关节机器人末端效应器的位姿相关动力学预测模型B,预测模型B如下

预测模型B中,

步骤3:在末端效应器上安装三轴加速度传感器,安装位置为末端效应器坐标系原点处,且三轴加速度传感器的各轴方向与末端效应器坐标系各轴平行;

步骤4:设计全因子三水平试验,因子为旋转关节,水平为旋转关节的旋转角度;全因子三水平试验中共规划了3

步骤5:控制多旋转关节机器人依次到达规划的所有位姿,并在每个位姿下通过模态锤击法获取该位姿下的末端效应器在其自身坐标系下的频响张量;

步骤6:对多旋转关节机器人任意位姿

本发明具有如下有益效果:

(1)从各个位姿下的频率响应函数的相互关系出发,将传统数据驱动预测模型所需的19

(2)规避了由于多旋转关节机器人结构复杂的结构响应导致的解析模型不完备的问题,完全基于实验频率响应函数与各个位姿下的频率响应函数的相互关系,提高了传统解析预测模型的预测精确范围;

(3)该模型仅需要知道该多旋转关节机器人各关节坐标系与末端效应器坐标系的旋转变换关系,而不需要连杆和关节的力学参数,也不需要事先进行模态拟合等操作,易于编程实现。

附图说明

图1为本发明的多旋转关节机器人的全因子三水平示意图。

图2为本发明的三旋转关节机器人示意图。

图3为本发明的预测算法示意图。

图4为本发明三轴加速度传感器的安装示意图。

图5为本发明不同位姿下预测和测试频响函数对比图。

图6为本发明不同位姿下预测和测试频响函数对比图。

图7为本发明不同位姿下预测和测试频响函数对比图。

图8为本发明不同位姿下预测和测试频响函数对比图。

图9为本发明不同位姿下预测和测试频响函数对比图。

图10为本发明不同位姿下预测和测试频响函数对比图。

具体实施方式

本实施例提供的一种多旋转关节机器人末端效应器位姿相关动力学的预测方法包括如下步骤:

步骤1:根据子结构耦合理论,建立含单旋转关节连杆的末端频率响应函数矩阵的预测模型A,预测模型A如下:

预测模型A中,H(*)为末端坐标系下的末端频率响应函数矩阵,G(*)为关节坐标系下的末端频率响应函数矩阵,*为旋转关节的旋转角度; g

R为末端坐标系向旋转关节坐标系转换的旋转矩阵;h

通过预测模型A,当已知旋转关节的旋转角度为0、π⁄4、π⁄2时,末端坐标系下的末端频率响应函数矩阵为(H(0),H(π⁄4),H(π⁄2)),求得旋转关节的旋转角度为θ时单旋转关节连杆的末端频率响应函数矩阵H(θ)。

步骤2:依据递归思想,基于含单旋转关节连杆的末端频率响应函数矩阵的预测模型A,建立多旋转关节机器人末端效应器的位姿相关动力学预测模型B,预测模型B如下:

预测模型B中,

步骤3:在末端效应器上安装有三轴加速度传感器,安装位置为末端效应器坐标系原点处,且三轴加速度传感器各轴方向与末端效应器坐标系的各坐标轴平行,如图4所示;三轴加速度传感器通过数据采集器与PC机连接,用于采集末端效应器的加速度信号。

步骤4:设计全因子三水平试验,因子为旋转关节、水平为旋转关节的旋转角度(0、π⁄4、π⁄2)。全因子三水平试验中共规划了3

步骤5:控制机器人依次到达图1规划中的所有位姿。在每个位姿下,使用力锤分别从末端效应器坐标系的三个坐标轴方向敲击末端效应器,通过数据采集器采集力锤的时变力信号和加速度传感器的时变加速度信号。时变加速度信号通过PC机内搭载的M+PSMARTOFFICE软件分析处理,得到末端效应器的频响函数矩阵的各分量。在PC机内储存该步骤所采集的各位姿下的频响函数矩阵。

步骤6:步骤1到步骤5已经建立了多旋转关节机器人对机器人任意位姿(θ

用一个含有两个旋转关节的机器人作为例子,该机器人的原理示意图如图2所示。对于含有3个或者更多旋转关节的机器人,其频响函数矩阵预测过程与之类似。

第一步:建立其关节坐标系和末端执行器坐标系,如图2所示。需要注意的是,关节坐标系的z坐标轴应与旋转关节的旋转轴重合。建立旋转变换矩阵的表达式。本实施例中旋转关节2与末端效应器之间的旋转变换矩阵

第二步,依据预测模型B,可得含有两个旋转关节的机器人末端效应器的位姿相关动力学预测模型为:

第三步:在末端效应器上安装有三轴加速度传感器,安装位置为末端效应器坐标系原点处,且三轴加速度传感器各轴方向与末端效应器坐标系的各坐标轴平行。

第四步:设计全因子三水平试验,因子为旋转关节、水平为旋转关节的旋转角度(0、π⁄4、π⁄2)。对于含有两个旋转关节的机器人,试验设计共计9组位姿如下:(0,0),(π⁄4,0),(π⁄2,0),(0,π⁄4),(π⁄4,π⁄4),(π⁄2,π⁄4),(0,π⁄2),(π⁄4,π⁄2),(π⁄2,π⁄2)。

第五步:控制机器人依次到达第四步所述规划中的所有位姿。在每个位姿下,使用力锤分别从末端效应器坐标系的三个坐标轴方向敲击末端效应器,通过数据采集器采集力锤的时变力信号和加速度传感器的时变加速度信号,这些信号通过PC机内搭载的M+PSMARTOFFICE软件分析处理,得到末端效应器的频响函数矩阵的各分量。

在PC机内储存该步骤所采集的各位姿下的频响函数矩阵:H((0,0))、H((π⁄4,0))、H((π⁄2,0))、H((0,π⁄4))、H((π⁄4,π⁄4))、H((π⁄2,π⁄4))、H((0,π⁄2))、H((π⁄4,π⁄2))、H((π⁄2,π⁄2))。

第六步:第三步至第五步已经获得了预测模型B的所有要求的输入参数,第二步给出了旋转关节数为2时预测模型B的具体表达式,第二步的计算方式同样可以由图3表示。具体地,针对任意给定位姿(θ

(1)先将第五步储存的各频响函数矩阵转换到旋转关节2的坐标系下:

(2)分别用以下三组公式计算预测(0,θ

预测频响函数矩阵H((0,θ

公式中,H((0,θ

预测频响函数矩阵H((π⁄4,θ

公式中,H((π⁄4,θ

R

预测频响函数矩阵H((π⁄2,θ2)):

公式中,H((π⁄2,θ

R

(3)将H((0,θ

(4)使用G

公式中,H((θ

R

在6个任意指定的多旋转关节机器人位姿下,其预测的末端效应器频率响应函数以及其测试值如下图5~图10所示。其中下标xx,yy,zz代表H的11,22,33分量;pre代表预测值、test代表测试值;图中展示了该机器人的几何形状及位姿;从图中的曲线图可以看出测试的频响函数和预测频响函数基本重合,证明本实施例方法的准确性和可行性。

上所述仅是本发明优选的实施方式,但本发明的保护范围并不局限于此,任何基于本发明所提供的技术方案和发明构思进行的改造和替换都应涵盖在本发明的保护范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号