法律状态公告日
法律状态信息
法律状态
2022-06-03
公开
发明专利申请公布
技术领域
本发明涉及电池状态估计领域,具体涉及一种基于双三角结构矩阵的锂电池SOH估计方法。
背景技术
SOH作为衡量电动汽车运行状态的重要参数,对电动汽车的续航里程预测和安全可靠运行具有重要作用。现有SOH估计环节主要可分为特征处理、模型应用两部分。
在特征处理环节,基于电池运行中的电压、电流、温度、时间数据,或是对电压、电流、温度、时间进行数学计算后形成的二次数据,构造健康特征来映射SOH,能实现实用性更高、鲁棒性更好的SOH估计。然而现有方法在特征定义后,直接舍去在相关性分析中表现较差的特征,导致信息丢失,限制了SOH估计精度的提高。
在模型应用环节,数据驱动法以近年来发展迅速的卷积神经网络为代表,通过离线结合大数据训练模型确保精度,在线使用模型快速预测确保实时性,兼顾了精度和实时性两个方面。然而,现有二维卷积神经网络的输入缺乏一种有效的构造标准,只是由健康特征进行简单的复制拼凑得到,没有根据健康特征的相关性进行处理,不能充分利用健康特征和二维数据矩阵的优势。
发明内容
本发明为克服上述现有技术所述的不足,提供了一种基于双三角结构矩阵的锂电池SOH估计方法。本发明的技术方案如下:
一种基于双三角结构矩阵的锂电池SOH估计方法,其特征在于,具体步骤如下:
S1:定义n个健康特征,并通过对电池进行循环充放电测试,获取每个循环的n个健康特征及其对应的SOH实际值;
S2:采用综合相关性分析方法,确定步骤S1所述n个健康特征的特征权重;
S3:根据特征权重形成双三角矩阵左上区的健康特征分布规则,根据随机数和特征权重累加区间形成双三角矩阵右下区的健康特征分布规则,从而形成整个双三角矩阵的健康特征分布规则;
S4:将健康特征按步骤S3形成的双三角矩阵健康特征分布规则存入双三角矩阵,然后把双三角矩阵中的健康特征及其对应的SOH实际值分别作为二维卷积神经网络的输入和输出,训练二维卷积神经网络;
S5:估计锂电池SOH时,从实测数据中提取所述的n个健康特征,将健康特征按步骤S3形成的双三角矩阵健康特征分布规则存入双三角矩阵,然后把双三角矩阵中的健康特征输入步骤S4所述的二维卷积神经网络,获得对应的SOH估计值。
本方案中,步骤S3所述的整个双三角矩阵的健康特征分布规则,具体形成步骤如下:
S3-1:根据步骤S1所述的健康特征个数n,生成n×n的二维数据矩阵,二维数据矩阵的具体结构如下:
其中,a、b分别表示双三角矩阵的左上区元素、右下区元素,下标n,n表示元素位于双三角矩阵的第n行第n列;
S3-2:按特征权重从大到小的规则对健康特征进行排序,排序完成后,将第1个健康特征复制n份放到双三角矩阵的第1行,将第2个健康特征复制(n-1)份放到双三角矩阵的第2行,按所述规则依次将第i个健康特征复制(n+1-i)份放到双三角矩阵的第i行,直至完成所有n个健康特征的复制,由此形成双三角矩阵左上区的健康特征分布规则;
S3-3:对双三角矩阵右下区的每个元素,在(0,1]之间产生随机数,根据随机数落在特征权重累加区间的位置,决定元素存放的健康特征,由此形成双三角矩阵右下区的健康特征分布规则,所述决定元素存放的健康特征的具体规则如下:
c=rand(0,1]
其中,c表示在每次决定元素存放的健康特征时产生的随机数,rand(0,1]表示在(0,1]之间产生的随机数,x
本方案中,所述步骤S2的综合相关性分析方法,具体步骤如下:
S2-1:使用三种相关系数评价方法,得到综合相关系数分数,具体计算方式如下:
ω
其中,ω
S2-2:对步骤S2-1得到的综合相关系数分数进行归一化,得到特征权重:
其中,ω
本方案中,步骤S1所述的健康特征,具体定义规则如下:
所述n个健康特征可以是电池运行中的电压、电流、温度、时间数据,也可以是对电压、电流、温度、时间进行数学计算后形成的二次数据。
与现有技术相比,本发明技术方案的有益效果是:
本发明基于综合相关性分析方法确定健康特征的特征权重,根据特征权重形成双三角矩阵左上区的健康特征分布规则,根据随机数和特征权重累加区间形成双三角矩阵右下区的健康特征分布规则,从而形成整个双三角矩阵的健康特征分布规则,有效利用了低相关性特征的信息,提高了SOH估计的精度。本发明提出的双三角矩阵,为二维卷积神经网络提出了一种输入构造标准,充分结合了健康特征和二维数据矩阵的优势。综上,本发明具有良好的工业应用前景。
附图说明
图1为本发明提出的一种基于双三角结构矩阵的锂电池SOH估计方法流程图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
在一个具体的实施例中,如图1所示,一种基于双三角结构矩阵的锂电池SOH估计方法,包括以下步骤:
S1:定义n个健康特征,并通过对电池进行循环充放电测试,获取每个循环的n个健康特征及其对应的SOH实际值;
S2:采用综合相关性分析方法,确定步骤S1所述n个健康特征的特征权重;
S3:根据特征权重形成双三角矩阵左上区的健康特征分布规则,根据随机数和特征权重累加区间形成双三角矩阵右下区的健康特征分布规则,从而形成整个双三角矩阵的健康特征分布规则;
S4:将健康特征按步骤S3形成的双三角矩阵健康特征分布规则存入双三角矩阵,然后把双三角矩阵中的健康特征及其对应的SOH实际值分别作为二维卷积神经网络的输入和输出,训练二维卷积神经网络;
S5:估计锂电池SOH时,从实测数据中提取所述的n个健康特征,将健康特征按步骤S3形成的双三角矩阵健康特征分布规则存入双三角矩阵,然后把双三角矩阵中的健康特征输入步骤S4所述的二维卷积神经网络,获得对应的SOH估计值。
本方案中,步骤S3所述的整个双三角矩阵的健康特征分布规则,具体形成步骤如下:
S3-1:根据步骤S1所述的健康特征个数n,生成n×n的二维数据矩阵,二维数据矩阵的具体结构如下:
其中,a、b分别表示双三角矩阵的左上区元素、右下区元素,下标n,n表示元素位于双三角矩阵的第n行第n列;
S3-2:按特征权重从大到小的规则对健康特征进行排序,排序完成后,将第1个健康特征复制n份放到双三角矩阵的第1行,将第2个健康特征复制(n-1)份放到双三角矩阵的第2行,按所述规则依次将第i个健康特征复制(n+1-i)份放到双三角矩阵的第i行,直至完成所有n个健康特征的复制,由此形成双三角矩阵左上区的健康特征分布规则;
S3-3:对双三角矩阵右下区的每个元素,在(0,1]之间产生随机数,根据随机数落在特征权重累加区间的位置,决定元素存放的健康特征,由此形成双三角矩阵右下区的健康特征分布规则,所述决定元素存放的健康特征的具体规则如下:
c=rand(0,1]
其中,c表示在每次决定元素存放的健康特征时产生的随机数,rand(0,1]表示在(0,1]之间产生的随机数,x
本方案中,所述步骤S2的综合相关性分析方法,具体步骤如下:
S2-1:使用三种相关系数评价方法,得到综合相关系数分数,具体计算方式如下:
ω
其中,ω
S2-2:对步骤S2-1得到的综合相关系数分数进行归一化,得到特征权重:
其中,ω
本方案中,步骤S1所述的健康特征,具体定义规则如下:
所述n个健康特征可以是电池运行中的电压、电流、温度、时间数据,也可以是对电压、电流、温度、时间进行数学计算后形成的二次数据。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。