首页> 中国专利> 一种作物软硬变化区域的划分方法及系统

一种作物软硬变化区域的划分方法及系统

摘要

本发明公开一种作物软硬变化区域的划分方法及系统,所述作物软硬变化区域的划分方法包括:分别获取同一作物的拔节期影像和播种期影像;对所述拔节期影像和播种期影像逐波段进行差值计算,得到差值影像;根据所述差值影像绘制同一剖线中像元与变化强度对应关系的第一折线图以及像元与变化强度的梯度对应关系的第二折线图,所述剖线为作物种植区域的内部到外部的一条连接线;根据所述第一折线图和第二折线图确定作物种植区域中的硬变化区HCR与软变化区SCR、SCR与未变化区NCR的边界变化强度,所述边界变化强度包括第一变化强度T

著录项

  • 公开/公告号CN108305244A

    专利类型发明专利

  • 公开/公告日2018-07-20

    原文格式PDF

  • 申请/专利权人 北京工业职业技术学院;

    申请/专利号CN201711372713.0

  • 发明设计人 朱爽;崔有祯;李长青;

    申请日2017-12-19

  • 分类号

  • 代理机构北京高沃律师事务所;

  • 代理人王戈

  • 地址 100000 北京市石景山区石门路368号(北京工业职业技术学院建筑与测绘工程学院工程测量教研室)

  • 入库时间 2023-06-19 05:55:12

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-06-23

    授权

    授权

  • 2018-08-14

    实质审查的生效 IPC(主分类):G06T7/00 申请日:20171219

    实质审查的生效

  • 2018-07-20

    公开

    公开

说明书

技术领域

本发明涉及作物检测技术领域,特别是涉及一种作物软硬变化区域的划分方法及系统。

背景技术

遥感技术具有覆盖范围广、探测周期短的特点,是进行农作物准确识别的重要技术手段。利用多期遥感影像进行作物检测识别,能够根据作物短期内的光谱变化,定量刻画出作物的生长物候特征,以此为依据进行作物识别,可有效消除作物光谱相混的问题,提高作物的识别精度。在利用遥感变化检测技术进行农作物识别的过程中,软硬变化区域共存是遥感影像作为采用格网模型进行数据存储不可回避的问题。

如何有效地识别出软变化区域(Soft change region,SCR)、硬变化区域(Hardchange region,HCR)是进行作物软硬变化检测识别的关键。

而在变化检测识别过程中,针对像元变化强度测算生成的变化强度图,一般通过阈值来确定地表的变化、软变化区域SCR、硬变化区域HCR、未变化区域(Non changeregion,NCR)。

目前,确定阈值的方法多采用人工目视判读,但该方法受到人为主观因素的影响比较大,且操作困难,难以形成统一的标准。

此外,还有一种阈值确定方法介于二者之间,即交互式确定阈值,如陈晋等提出双窗口变步长阈值设定方法确定变化区域,从变化强度影像上分别选出变化、未变化的样本,通过迭代设定阈值来不断的逼近最高识别精度,最终确定出全局最优的划分阈值。双窗口变步长阈值确定方法只要选择出合适的变化样本,就能够快速确定阈值,且对变化对象的标识精度较高。

但是,上述方法对于硬、软变化区域而言,会存在一定的实施难度,主要是由于在中分辨率遥感影像上,从HCR穿过SCR向NCR区域过渡中,由于作物种植区域形状特征复杂和尺度等因素,软变化区域多位于硬变化像元的周边,增加了软变化区域的提取难度。

发明内容

本发明的目的是提供一种作物软硬变化区域的划分方法及系统,可提高HCR、SCR及NCR三个区域的划分精度。

为实现上述目的,本发明提供了如下方案:

一种作物软硬变化区域的划分方法,所述作物软硬变化区域的划分方法包括:

分别获取同一作物的拔节期影像和播种期影像;

对所述拔节期影像和播种期影像逐波段进行差值计算,得到差值影像;

根据所述差值影像绘制同一剖线中像元与变化强度对应关系的第一折线图以及像元与变化强度的梯度对应关系的第二折线图,所述剖线为作物种植区域的内部到外部的一条连接线;

根据所述第一折线图和第二折线图确定作物种植区域中的硬变化区域HCR与软变化区域SCR、软变化区域SCR与未变化区域NCR的边界变化强度,所述边界变化强度包括第一变化强度T1和第二变化强度T2

根据所述第一变化强度T1和第二变化强度T2,确定HCR像元、SCR像元以及NCR像元;

分别根据各所述HCR像元、SCR像元及NCR像元确定对应的HCR、SCR及NCR。

可选的,所述作物软硬变化区域的划分方法还包括:

采用3×3窗口分别对HCR和NCR进行滤波:

如果当前窗口内的SCR像元的个数超过全部像元个数1/3时,则将当前窗口内的中心像元归属为SCR像元;

否则将当前窗口内的中心像元归属为所述当前窗口内像元个数最多的HCR像元或NCR像元;

如果HCR像元和NCR像元的个数相同,根据所述中心像元在两个时期的变化方向确定该像元的归属类别:如果变化方向为正向,则为HCR像元,否则为SCR像元。

可选的,所述硬变化区域HCR与软变化区域SCR、软变化区域SCR与未变化区域NCR的边界变化强度,具体包括:

确定所述第二折线图中第一个出现变化强度的梯度下降且下降幅度最大的第一像元p1以及第二个出现变化强度的梯度下降且下降幅度最大的第二像元p2

根据所述第一折线图,分别确定所述第一像元p1对应的变化强度和第二像元p2对应的变化强度;其中,所述第一像元p1对应的变化强度为第一变化强度T1,第二像元p2对应的变化强度为第二变化强度T2

可选的,根据以下公式确定第二折线图中不同像元对应的变化强度的梯度:

ΔCGi=CMi+1-CMi,i=1,2,...,m;

其中,i表示像元,m表示像元的总数量,CMi表示像元i的变化强度,ΔCGi表示像元i的变化强度的梯度。

可选的,根据所述第一变化强度T1和第二变化强度T2,确定HCR像元、SCR像元以及NCR像元,具体包括:

根据以下公式确定不同像元的变化强度CMi

其中,i表示像元,k表示光谱波段,n表示总的波段数,表示像元i在t1时期k波段的上的光谱值,表示像元i在t2时期k波段的上的光谱值;

根据以下公式确定作物种植区域中的像元的归属类别:

可选的,所述作物软硬变化区域的划分方法还包括:

当存在多条剖线时,

选取各剖线的第一变化强度T1中的最大值为第一变化强度T1

选取各剖线的第二变化强度T2中的最小值为第二变化强度T2

为实现上述目的,本发明提供了如下方案:

一种作物软硬变化区域的划分系统,所述作物软硬变化区域的划分系统包括:

获取单元,用于分别获取同一作物的拔节期影像和播种期影像;

计算单元,用于对所述拔节期影像和播种期影像逐波段进行差值计算,得到差值影像;

绘制单元,用于根据所述差值影像绘制同一剖线中像元与变化强度对应关系的第一折线图以及像元与变化强度的梯度对应关系的第二折线图,所述剖线为作物种植区域的内部到外部的一条连接线;

确定单元,用于根据所述第一折线图和第二折线图确定作物种植区域中的硬变化区域HCR与软变化区域SCR、软变化区域SCR与未变化区域NCR的边界变化强度,所述边界变化强度包括第一变化强度T1和第二变化强度T2

类别归属单元,用于根据所述第一变化强度T1和第二变化强度T2,确定HCR像元、SCR像元以及NCR像元;

区域划分单元,用于分别根据各所述HCR像元、SCR像元及NCR像元确定对应的HCR、SCR及NCR。

可选的,所述作物软硬变化区域的划分系统还包括:

滤波单元,用于采用3×3窗口分别对HCR和NCR进行滤波:

如果当前窗口内的SCR像元的个数超过全部像元个数1/3时,则将当前窗口内的中心像元归属为SCR像元;

否则将当前窗口内的中心像元归属为所述当前窗口内像元个数最多的HCR像元或NCR像元;如果HCR像元和NCR像元的个数相同,根据所述中心像元在两个时期的变化方向确定该像元的归属类别:如果变化方向为正向,则为HCR像元,否则为SCR像元。

可选的,所述类别归属单元包括:

强度确定模块,用于根据以下公式确定不同像元的变化强度CMi

其中,i表示像元,k表示光谱波段,n表示总的波段数,表示像元i在t1时期k波段的上的光谱值,表示像元i在t2时期k波段的上的光谱值;

类别归属模块,用于根据以下公式确定作物种植区域中的像元的归属类别:

可选的,所述作物软硬变化区域的划分系统还包括:

选择单元,用于当存在多条剖线时,

选取各剖线的第一变化强度T1中的最大值为第一变化强度T1

选取各剖线的第二变化强度T2中的最小值为第二变化强度T2

根据本发明提供的具体实施例,本发明公开了以下技术效果:

本发明基于剖线梯度变化方法(Profile based Gradient Change Magnitude,PGCM),通过获取作物的拔节期影像和播种期影像绘制剖线,确定作物种植区域中的硬变化区域HCR与软变化区域SCR、软变化区域SCR与未变化区域NCR的边界变化强度,进而实现对HCR、SCR和NCR的精确划分,为作物的软硬变化检测提取提供基础。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例作物软硬变化区域的划分方法的流程图;

图2a为作物的拔节期影像;

图2b为作物的播种期影像;

图3a为差值影像;

图3b为图3a中所示差值影像的变化强度图;

图4为像元与变化强度及变化强度的梯度的对应关系图;

图5为本发明实施例作物软硬变化区域的划分系统的模块结构示意图。

符号说明:

获取单元—1,计算单元—2,绘制单元—3,确定单元—4,类别归属单元—5,区域划分单元—6。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明的目的是提供一种作物软硬变化区域的划分方法,基于剖线梯度变化方法PGCM,通过获取作物的拔节期影像和播种期影像绘制剖线,确定作物种植区域中的硬变化区域HCR与软变化区域SCR、软变化区域SCR与未变化区域NCR的边界变化强度,进而实现对HCR、SCR和NCR的精确划分,为作物的软硬变化检测提取提供基础。

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。

如图1所示,本发明作物软硬变化区域的划分方法包括:

步骤100:分别获取同一作物的拔节期影像和播种期影像。

步骤200:对所述拔节期影像和播种期影像逐波段进行差值计算,得到差值影像。

步骤300:根据所述差值影像绘制同一剖线中像元与变化强度对应关系的第一折线图以及像元与变化强度的梯度对应关系的第二折线图。

所述剖线为作物种植区域的内部A到外部B的一条连接线,用于A→B表示。

步骤400:根据所述第一折线图和第二折线图确定作物种植区域中的硬变化区域HCR与软变化区域SCR、软变化区域SCR与未变化区域NCR的边界变化强度,所述边界变化强度包括第一变化强度T1和第二变化强度T2

步骤500:根据所述第一变化强度T1和第二变化强度T2,确定HCR像元、SCR像元以及NCR像元。

步骤600:分别根据各所述HCR像元、SCR像元及NCR像元确定对应的HCR、SCR及NCR。

其中,在步骤300中,根据公式(1)确定第二折线图中不同像元对应的变化强度的梯度:

ΔCGi=CMi+1-CMi,i=1,2,...,m>

其中,i表示像元,m表示像元的总数量,CMi表示像元i的变化强度,ΔCGi表示像元i的变化强度的梯度。

在步骤400中,所述硬变化区域HCR与软变化区域SCR、软变化区域SCR与未变化区域NCR的边界变化强度,具体包括:

步骤401:确定所述第二折线图中第一个出现变化强度的梯度下降且下降幅度最大的第一像元p1以及第二个出现变化强度的梯度下降且下降幅度最大的第二像元p2

步骤402:根据所述第一折线图,分别确定所述第一像元p1对应的变化强度和第二像元p2对应的变化强度;其中,所述第一像元p1对应的变化强度为第一变化强度T1,第二像元p2对应的变化强度为第二变化强度T2

在执行步骤400之后,本发明作物软硬变化区域的划分方法还包括:

当存在多条剖线时,

选取各剖线的第一变化强度T1中的最大值为第一变化强度T1

选取各剖线的第二变化强度T2中的最小值为第二变化强度T2

由剖线A→B生成的SCR混合像元为p1→p2-1对应的像元集合Si。如果有j条剖线,则会生成j个SCR(j个Si)的像元集合,定义为SCRP,即:

T1=Max(SCRP)>

T2=Min(SCRP)>

在步骤500中,根据所述第一变化强度T1和第二变化强度T2,确定HCR像元、SCR像元以及NCR像元,具体包括:

步骤501:根据公式(4)确定不同像元的变化强度CMi

其中,i表示像元,k表示光谱波段,n表示总的波段数,表示像元i在t1时期k波段的上的光谱值,表示像元i在t2时期k波段的上的光谱值。

步骤502:根据公式(5)确定作物种植区域中的像元的归属类别:

此外,考虑到作物种植区域内部仍然存在光谱的不确定性,本发明作物软硬变化区域的划分方法还包括:

在提取出SCR后,采用3×3窗口分别对HCR和NCR进行滤波:

如果当前窗口内的SCR像元的个数超过全部像元个数1/3时,则将当前窗口内的中心像元归属为SCR像元;

否则将当前窗口内的中心像元归属为所述当前窗口内像元个数最多的HCR像元或NCR像元;如果HCR像元和NCR像元的个数相同,先归属为HCR,再根据所述中心像元在两个时期的变化方向确定该像元的归属类别。如果变化方向为正向,则为HCR像元,否则为SCR像元。

下面以一具体实施例详细介绍本发明作物软硬变化区域的划分方法:

首先获取冬小麦的拔节期影像(如图2a所示)和播种期影像(如图2b所示);对拔节期影像(图2a)与播种期影像(图2b)之间逐波段进行差值计算,得到差值影像图。如图3a所示为差值影像的一个子区图,从图上可以清晰地看出,差值影像图能够有效地表明冬小麦的空间分布。图3b为对应的变化强度图,高亮的区域变化程度剧烈为HCR,黑色区域为NCR,而灰色过渡的区域就是SCR。结合图3a所示,可以看出冬小麦的分布情况,直线AB为从冬小麦种植区域内部到外部的剖线A→B,可见冬小麦的变化强度呈现逐渐降低的趋势,这正好符合从冬小麦种植区域内部HCR向SCR逐步过渡的状态。

进一步地,根据图3a可以定量表达出从种植区域内部向外部过渡的过程中,变化强度在逐渐的降低,下降区域呈逐步减缓的趋势。图3b表明了从A→B过程中整个变化强度的梯度变化,即剖线上的下一个像元变化强度与上一个像元的变化强度之差。从剖线的变化强度来看,冬小麦从HCR区域向SCR的过程中,整体趋势在下降。从剖线上来看,对于硬变化区域,由于多为纯净的冬小麦像元,变化强度处于高值,在这一范围变化强度的差值变化不大(1至3个点),随着距离的增加,由纯净的冬小麦像元进入混合区域的冬小麦像元区域,第3点至第4点的差值幅度突然增大,而且为负值,记为T1,该位置的像元为SCR像元的上限。随着距离的进一步的增加,变化幅度继续降低,在第6个像元的时候,差值幅度又一次突然增大,即第5个点与第6个点之间的差值,这正好位于从软变化区向未变化区过渡的状态,即T2,该位置的像元为SCR像元的下限。

基于剖线梯度变化方法PGCM,进行硬、软和未变化区域划分方法。具体根据公式(1)不同像元对应的变化强度的梯度(如图3b所示):

ΔCGi=CMi+1-CMi,i=1,2,...,m>

其中,i表示像元,m表示像元的总数量,CMi表示像元i的变化强度,ΔCGi表示像元i的变化强度的梯度。

根据公式(4)确定不同像元的变化强度CMi

其中,i表示像元,k表示光谱波段,n表示总的波段数,表示像元i在t1时期k波段的上的光谱值,表示像元i在t2时期k波段的上的光谱值。

从图3b可以分析出,从HCR→SCR、SCR→NCR两个阶段的ΔCGi均发生了突变。从农业景观特征角度分析,耕地多以规整种植区域的方式排布,农田周边是以休耕地为主。对于从作物田块跨越到周边其它地物区域,遥感影像上产生混合像元,这些混合像元内部一般含有一定比例的作物和其他的地物。例如,从作物种植区域(像元内作物种植面积为100%)向休耕地过渡,休耕地像元内部可能含有70%的作物和30%的其它地物,这一突变是能够通过ΔCGi表现出来的。

根据图4所示,可确定第一变化强度T1和第二变化强度T2:确定所述第二折线图中第一个出现变化强度的梯度下降且下降幅度最大的第一像元p1以及第二个出现变化强度的梯度下降且下降幅度最大的第二像元p2

根据所述第一折线图,分别确定所述第一像元p1对应的变化强度和第二像元p2对应的变化强度;其中,所述第一像元p1对应的变化强度为第一变化强度T1,第二像元p2对应的变化强度为第二变化强度T2

由剖线A→B生成的SCR混合像元为p1→p2-1对应的像元集合Si。如果有j条剖线,则会生成j个SCR(j个Si)的像元集合,定义为SCRP,即:

T1=Max(SCRP)>

T2=Min(SCRP)>

其中,Max(·)表示取最大值函数,Mix(·)表示取最小值函数。

通过变化强度来确定冬小麦种植区域中的像元的归属类别:

基于PGCM方法来划分HCR、SCR和NCR三个区域的关键步骤是确定T1,T2。其中,HCR、SCR是进一步进行作物识别的基础。

考虑到作物种植区域内部仍然存在光谱的不确定性。因此,在提取出SCR后,还可采用3×3窗口分别对HCR和NCR进行滤波:

如果当前窗口内的SCR像元的个数超过全部像元个数1/3时,则将当前窗口内的中心像元归属为SCR像元;

否则将当前窗口内的中心像元归属为所述当前窗口内像元个数最多的HCR像元或NCR像元;如果HCR像元和NCR像元的个数相同,根据所述中心像元在两个时期的变化方向确定该像元的归属类别:如果变化方向为正向,则为HCR像元,否则为SCR像元。

本发明针对遥感变化检测过程中变化强度阈值划分的问题,通过从提取的作物图斑内部向外部绘制剖线,计算剖线变化强度的变化,根据梯度变化特性快速确定HCR与SCR、SCR与NCR的边界变化强度,进行HCR、SCR和NCR区域的划分,为作物的软硬变化检测提取提供基础。

此外,本发明还提供一种作物软硬变化区域的划分系统,可提高HCR、SCR及NCR三个区域的划分精度。如图5所示,本发明作物软硬变化区域的划分系统包括获取单元1、计算单元2、绘制单元3、确定单元4、类别归属单元5及区域划分单元6。

其中,所述获取单元1用于分别获取同一作物的拔节期影像和播种期影像;所述计算单元2用于对所述拔节期影像和播种期影像逐波段进行差值计算,得到差值影像;所述绘制单元3用于根据所述差值影像绘制同一剖线中像元与变化强度对应关系的第一折线图以及像元与变化强度的梯度对应关系的第二折线图,所述剖线为作物种植区域的内部到外部的一条连接线;所述确定单元4用于根据所述第一折线图和第二折线图确定作物种植区域中的硬变化区域HCR与软变化区域SCR、软变化区域SCR与未变化区域NCR的边界变化强度,所述边界变化强度包括第一变化强度T1和第二变化强度T2;所述类别归属单元5用于根据所述第一变化强度T1和第二变化强度T2,确定HCR像元、SCR像元以及NCR像元;所述区域划分单元6用于分别根据各所述HCR像元、SCR像元及NCR像元确定对应的HCR、SCR及NCR。

进一步地,所述绘制单元3包括用于根据公式(1)确定第二折线图中不同像元对应的变化强度的梯度:

ΔCGi=CMi+1-CMi,i=1,2,...,m>

其中,i表示像元,m表示像元的总数量,CMi表示像元i的变化强度,ΔCGi表示像元i的变化强度的梯度。

所述确定单元4包括第一确定子模块和第二确定子模块;所述第一确定子模块用于确定所述第二折线图中第一个出现变化强度的梯度下降且下降幅度最大的第一像元p1以及第二个出现变化强度的梯度下降且下降幅度最大的第二像元p2;所述第二确定子模块用于根据所述第一折线图,分别确定所述第一像元p1对应的变化强度和第二像元p2对应的变化强度;其中,所述第一像元p1对应的变化强度为第一变化强度T1,第二像元p2对应的变化强度为第二变化强度T2

进一步地,本发明作物软硬变化区域的划分系统还包括选择单元,所述选择单元与所述确定单元4连接。其中所述选择单元用于当存在多条剖线时,选取各剖线的第一变化强度T1中的最大值为第一变化强度T1;选取各剖线的第二变化强度T2中的最小值为第二变化强度T2

由剖线A→B生成的SCR混合像元为p1→p2-1对应的像元集合Si。如果有j条剖线,则会生成j个SCR(j个Si)的像元集合,定义为SCRP,即:

T1=Max(SCRP)>

T2=Min(SCRP)>

其中,Max(·)表示取最大值函数,Mix(·)表示取最小值函数。

所述类别归属单元包括:

强度确定模块,用于根据公式(4)确定不同像元的变化强度CMi

其中,i表示像元,k表示光谱波段,n表示总的波段数,表示像元i在t1时期k波段的上的光谱值,表示像元i在t2时期k波段的上的光谱值;

类别归属模块,用于根据公式(5)确定作物种植区域中的像元的归属类别:

考虑到作物种植区域内部仍然存在光谱的不确定性,本发明作物软硬变化区域的划分系统还包括:

滤波单元,用于采用3×3窗口分别对HCR和NCR进行滤波:

如果当前窗口内的SCR像元的个数超过全部像元个数1/3时,则将当前窗口内的中心像元归属为SCR像元;

否则将当前窗口内的中心像元归属为所述当前窗口内像元个数最多的HCR像元或NCR像元;如果HCR像元和NCR像元的个数相同,根据所述中心像元在两个时期的变化方向确定该像元的归属类别:如果变化方向为正向,则为HCR像元,否则为SCR像元。

相对于现有技术,本发明作物软硬变化区域的划分系统与上述作物软硬变化区域的划分方法的有益效果相同,在此不再赘述。

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。

本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号