首页> 中国专利> CdZnTe薄膜和AlN/CdZnTe基紫外光探测器制备方法及应用

CdZnTe薄膜和AlN/CdZnTe基紫外光探测器制备方法及应用

摘要

本发明提供了一种CdZnTe薄膜和AlN/CdZnTe基紫外光探测器制备方法及应用,基于AlN基底生长CdZnTe薄膜并制备AlN/CdZnTe基紫外光探测器,本发明AlN/CdZnTe基紫外光探测器制备方法包括AlN衬底的制备、CdZnTe多晶升华源的准备、衬底预处理、CdZnTe薄膜的生长过程、AlN/CdZnTe基紫外光探测器的电极制作5个主要步骤。本发明方法可以在AlN衬底上快速生长大面积、高质量的CdZnTe薄膜,AlN衬底可以保证AlN/CdZnTe基紫外光探测器在极端环境下的使用,所制得的复合结构对紫外光也有着较强的光响应。

著录项

  • 公开/公告号CN108258081A

    专利类型发明专利

  • 公开/公告日2018-07-06

    原文格式PDF

  • 申请/专利权人 上海大学;

    申请/专利号CN201711281101.0

  • 申请日2017-12-07

  • 分类号

  • 代理机构上海上大专利事务所(普通合伙);

  • 代理人顾勇华

  • 地址 200444 上海市宝山区上大路99号

  • 入库时间 2023-06-19 05:49:40

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-06-26

    授权

    授权

  • 2018-07-31

    实质审查的生效 IPC(主分类):H01L31/18 申请日:20171207

    实质审查的生效

  • 2018-07-06

    公开

    公开

说明书

技术领域

本发明涉及一种晶体材料制备工艺及应用,特别是涉及一种CdZnTe薄膜制备工艺及应用,应用于无机非金属材料制造工艺技术领域。

背景技术

紫外光是指波长范围为10nm-400nm的电磁辐射,得名来自于它的光谱在可见光中紫光的外侧。大自然中的紫外光主要来自太阳光,当日光透过大气层时,波长比290nm短的紫外线会被大气层吸收,人工的紫外线光源多是气体的电弧放电。随着科学技术的发展,紫外探测技术在民用和军事领域中应用越来越广泛。在民用领域,紫外探测技术可以应用于诸如火焰探测、海上油监、生物医药分析、臭氧的监测、太阳照度监测、公共安全侦察等;在军事领域中,紫外探测技术则可以应用于导弹的预警制导和紫外通讯等方面。总之,紫外探测技术是继红外和激光探测技术之后的新的军民两用的光电探测技术。

一直以来,高灵敏度的紫外探测大多采用的是对紫外光敏感的真空光电倍增管及相似的真空类型器件。但是,与固体型的探测器相比,真空类型器件有着体积大和工作电压太高的缺点;硅光电器件,作为固体探测器的代表,对可见光有响应,该特点在紫外探测中就会成为缺点,此时若要求只对紫外信号进行探测就会需要昂贵的前置滤光设施。伴随着宽禁带半导体材料研究的逐步深入,越来越多的人们开始考虑制备对可见光没有响应或响应较小的半导体紫外探测器。现在,许多国家研制出了多种结构的紫外探测器,如光导型、p-n结型、肖特基结型、p-i-n型、异质结型、MSM型等。由于实际应用的需求,我们需要量子效率高、面积大、分辨率高、动态范围宽、速度快、噪声低的紫外探测器。依据工作方式不同,可以将半导体探测器大致分为无结器件光电导探测器和结型器件光伏型探测器。光电导探测器是利用半导体的光电导效应而制作的光探测器,是在半导体薄膜上淀积两个欧姆接触而形成的。与别的光探测器相比较,光电导探测器的主要优点是内部增益较高,在同样的光照射条件下,比光伏探测器有着大得多的响应,内部增益一般大于100。光电导紫外光探测器具有结构和工艺较为简单及内部增益高等等优点,其缺点是响应速度慢,器件的暗电流和漏电流大。

CdZnTe单晶材料属于II-VI族化合物半导体,是由CdTe与ZnTe按一定比例组合而成的固熔体化合物。通过改变材料中Zn的比例,材料的晶格常数可以从CdTe的晶格常数到ZnTe的晶格常数连续变化,禁带宽度也会在1.45eV到2.28eV之间连续变化。作为一种宽禁带半导体,CdZnTe适用于紫外探测,且CdZnTe材料本身电阻率高,用作紫外探测时有着较小的暗电流和漏电流。而在衬底材料的选择时,传统的Si、GaAs等材料因禁带宽度过小而无法保证紫外探测器在高温、强辐射等极端条件下的正常使用。

发明内容

为了解决现有技术问题,本发明的目的在于克服已有技术存在的不足,提供一种CdZnTe薄膜和AlN/CdZnTe基紫外光探测器制备方法及应用,本发明方法能在AlN衬底上快速生长大面积、高质量的CdZnTe薄膜,AlN衬底能保证AlN/CdZnTe基紫外光探测器在极端环境下的使用,所制得的复合结构对紫外光也有着较强的光响应。

为达到上述目的,本发明采用如下技术方案:

一种基于AlN基底的CdZnTe薄膜的生长方法,包括如下步骤:

a.AlN衬底的准备:

使用AlN粉体为原料,AlN粉体的粒径不大于1μm,在不低于1.5MPa的条件下将AlN粉体进行初次干压,然后在不低于180MPa的油压条件下进行再次干压,得到AlN素坯,然后在氮氢混合气氛环境下,并在常压下,采用高温烧结方法制备块状AlN陶瓷,然后将得到的块状AlN陶瓷打磨切割至不大于1mm的厚度,再将AlN陶瓷基片的表面抛光至镜面亮度,用作衬底基板;优选采用的AlN粉体的颗粒比表面积不低于3.4㎡/g;优选采用的AlN粉体的纯度为98wt.%;优选采用1μm的研磨膏对AlN陶瓷基片的表面进行抛光;

b.CdZnTe多晶升华源的准备:

将Zn的质量百分比含量为10%的CdZnTe多晶料在研磨皿中研磨至细粉末状,用作升华源材料;

c.衬底预处理:

将在所述步骤a中制备的AlN陶瓷基片分别用丙酮、酒精、去离子水分别清洗至少15分钟,洗去AlN陶瓷基片表面的杂质和有机物,用氮气吹干后,放入近空间升华反应室内,作为衬底备用;

d.CdZnTe薄膜的生长过程:

开机械泵抽真空,将升华室内气压抽至不高于5Pa以下,开卤素灯,将升华源和衬底以不高于50℃/min的升温速度分别加热到600℃和500℃;采用近空间升华法,在衬底上生长薄膜材料至少60mins后,关闭卤素灯,待衬底上生长的薄膜材料冷却至室温后,关闭机械泵,取出负载薄膜材料的衬底,得到CdZnTe薄膜和AlN陶瓷基片结合的AlN/CdZnTe复合结构组件。

一种利用本发明基于AlN基底的CdZnTe薄膜的生长方法,制备AlN/CdZnTe复合结构组件,实施制备AlN/CdZnTe基紫外光探测器的方法,采用蒸镀法,在AlN/CdZnTe复合结构组件的CdZnTe薄膜表面上制备厚度不大于100nm的金电极层,得到AlN/CdZnTe/Au复合结构器件,然后将AlN/CdZnTe/Au复合结构器件在N2氛围中并在不低于450℃下,进行退火处理至少30min,使AlN/CdZnTe/Au复合结构器件功能层连接界面形成良好的欧姆接触,最终制得AlN/CdZnTe基紫外光探测器。

一种利用本发明制备AlN/CdZnTe基紫外光探测器的方法制备的AlN/CdZnTe基紫外光探测器的应用,在紫外光波段实现光响应。能保证AlN/CdZnTe复合结构制成的紫外光探测器在极端环境下的使用,所制得的复合结构对紫外光也有着较强的光响应。

本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:

1.本发明方法能在AlN衬底上快速生长大面积、高质量的CdZnTe薄膜;

2.本发明利用AlN衬底,能保证AlN/CdZnTe复合结构制成的紫外光探测器在极端环境下的使用,所制得的复合结构对紫外光也有着较强的光响应;

3.本发明实现了大尺寸CdZnTe薄膜成型和快速制备,提高了生产效率、节约了生产成本、有助于AlN/CdZnTe复合结构器件在更多领域应用的推广。

附图说明

图1是本发明优选实施例方法制备的AlN/CdZnTe复合结构材料的XRD图。

图2是本发明优选实施例方法制备的AlN/CdZnTe复合结构材料表面的SEM图。

图3是本发明优选实施例方法制备的AlN/CdZnTe复合结构材料截面的SEM图。

图4是本发明优选实施例方法制备的AlN/CdZnTe复合结构材料的I-V曲线图。

具体实施方式

以下结合具体的实施例子对上述方案做进一步说明,本发明的优选实施例详述如下:

在本实施例中,一种基于AlN基底的CdZnTe薄膜的生长方法,包括如下步骤:

a.AlN衬底的准备:

使用纯度为98wt.%的AlN粉体为原料,AlN粉体的粒径为1μm,AlN粉体的颗粒比表面积为3.4㎡/g,在1.5MPa的条件下将AlN粉体进行初次干压,然后在180MPa的油压条件下进行再次干压,得到AlN素坯,然后在氮氢混合气氛环境下,并在常压下,采用高温烧结方法制备块状AlN陶瓷,然后将得到的块状AlN陶瓷打磨切割至1mm的厚度,再采用1μm的研磨膏,将AlN陶瓷基片的表面抛光至镜面亮度,用作衬底基板;

b.CdZnTe多晶升华源的准备:

将Zn的质量百分比含量为10%的CdZnTe多晶料在研磨皿中研磨至细粉末状,用作升华源材料;

c.衬底预处理:

将在所述步骤a中制备的AlN陶瓷基片分别用丙酮、酒精、去离子水分别清洗15分钟,洗去AlN陶瓷基片表面的杂质和有机物,用氮气吹干后,放入近空间升华反应室内,作为衬底备用;

d.CdZnTe薄膜的生长过程:

开机械泵抽真空,将升华室内气压抽至5Pa以下,开卤素灯,将升华源和衬底以50℃/min的升温速度分别加热到600℃和500℃;采用近空间升华法,在衬底上生长薄膜材料60mins后,关闭卤素灯,待衬底上生长的薄膜材料冷却至室温后,关闭机械泵,取出负载薄膜材料的衬底,薄膜生长均匀且未脱落,得到CdZnTe薄膜和AlN陶瓷基片结合的AlN/CdZnTe复合结构组件。

利用本实施例制备AlN/CdZnTe复合结构组件,进行制备AlN/CdZnTe基紫外光探测器的方法,采用蒸镀法,在AlN/CdZnTe复合结构组件的CdZnTe薄膜表面上制备厚度为100nm的金电极层,得到AlN/CdZnTe/Au复合结构器件,然后将AlN/CdZnTe/Au复合结构器件在N2氛围中并在450℃下,进行退火处理30min,使AlN/CdZnTe/Au复合结构器件功能层连接界面形成良好的欧姆接触,完成AlN/CdZnTe基紫外光探测器的电极制作,最终制得AlN/CdZnTe基紫外光探测器。

本实施例制备制备的AlN/CdZnTe基紫外光探测器,在紫外光波段实现光响应。能保证AlN/CdZnTe复合结构制成的紫外光探测器在极端环境下的使用,所制得的复合结构对紫外光也有着较强的光响应。

有关实施例制备的AlN/CdZnTe基紫外光探测器采用实验仪器测试所得附图的解释说明

图1为AlN/CdZnTe复合结构的XRD图,图中(111)、(333)衍射峰分别对应衍射角23.980°、76.900°,与10%Zn含量的CdZnTe的衍射峰匹配良好,且所得CdZnTe薄膜沿(111)晶向择优生长。图2和图3分别为AlN/CdZnTe复合结构的表面SEM图和截面SEM图,如图图2和图3所示CdZnTe薄膜在AlN衬底上生长良好,颗粒成型且较为致密,厚度也达到了171μm。图4为AlN/CdZnTe复合结构在黑暗和自然光以及252nm的紫外光照射条件下的I-V曲线,图4中可以看出复合结构与金电极形成欧姆接触,接触良好,且加10V偏压时暗电流达到10-10A级别,自然光照下达到10-9A级别,紫外光照下到达10-8A级别,光电流比暗电流高两个数量级,响应良好。

本实施例采用AlN作为基底,由于AlN衬底具有宽的直接带隙,禁带宽度可达到6.42eV,热导高、化学惰性高、热稳定性好而成为比较理想的衬底材料。又由于AlN抗辐射能力强,容易制作欧姆接触、异质结结构,用作生长CdZnTe的衬底有利于紫外探测器件在各种极端环境的使用,有希望拓宽紫外光探测器的使用范围。本实施例采用近空间升华法制备的AlN/CdZnTe复合结构,在紫外光波段有着较为灵敏的光响应。本实施例AlN/CdZnTe基紫外光探测器制备方法包括AlN衬底的制备、CdZnTe多晶升华源的准备、衬底预处理、CdZnTe薄膜的生长过程、AlN/CdZnTe基紫外光探测器的电极制作五个主要步骤。本实施例方法不仅能在AlN衬底上快速生长大面积、高质量的CdZnTe薄膜,AlN衬底可以保证AlN/CdZnTe基紫外光探测器在极端环境下的使用,还能制得的复合结构,对紫外光也有着较强的光响应。

上面结合附图对本发明实施例进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明CdZnTe薄膜和AlN/CdZnTe基紫外光探测器制备方法及应用的技术原理和发明构思,都属于本发明的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号