首页> 中国专利> 基区Ge组分分段分布的SiGe/Si异质结光敏晶体管探测器

基区Ge组分分段分布的SiGe/Si异质结光敏晶体管探测器

摘要

基区Ge组分分段分布的SiGe/Si异质结光敏晶体管探测器是一种兼顾可见光和近红外光波段的探测器。该探测器包括Si衬底;在Si衬底上依次制备出的Si次集电区、Si集电区、Ge组份分段分布的SiGe基区/吸收层和多晶Si发射区;多晶Si发射区上的发射极;SiGe基区上的基极;Si亚集电区上的集电极。光窗口设计在基区台面,避免了光窗口在发射区台面时对入射光的损耗。因为不同Ge组份的SiGe材料对可见光波段和近红外光波段入射光的吸收系数和吸收长度不同,采用了Ge组份分段分布的基区/吸收层可以分别对应吸收波长短的可见光和波长长的近红外光,均衡可见光和近红外光波段内的吸收效率。

著录项

  • 公开/公告号CN107302037A

    专利类型发明专利

  • 公开/公告日2017-10-27

    原文格式PDF

  • 申请/专利权人 北京工业大学;

    申请/专利号CN201710436742.2

  • 申请日2017-06-12

  • 分类号

  • 代理机构北京思海天达知识产权代理有限公司;

  • 代理人刘萍

  • 地址 100124 北京市朝阳区平乐园100号

  • 入库时间 2023-06-19 03:38:37

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-05-17

    授权

    授权

  • 2017-11-24

    实质审查的生效 IPC(主分类):H01L31/109 申请日:20170612

    实质审查的生效

  • 2017-10-27

    公开

    公开

说明书

技术领域

本发明属于半导体光电子技术领域,特别涉及一种兼顾可见光和近红外光的SiGe/Si异质结光敏晶体管探测器。这种光敏晶体管探测器在可见光波段和近红外光波段入射光下都有高的吸收效率。

背景技术

硅基光电探测器具有低成本和易大规模集成的优点,且吸收谱落在光互联技术中的短距通信和甚短距通信用到的近红外波段和可见光波段。因此,相比价格昂贵、工艺复杂的化合物光电探测器,硅基光电探测器在短距和甚短距通信的应用等方面具有巨大的应用潜力。另外,红外探测还大量应用于预警、制导、夜视、跟踪及空间技术、天文、医学工业以及辐射测量,自动控制和激光探测,资源探测,大气监测等领域。而成本低,无电磁辐射,高速率高保密性的可见光通信(LiFi)也越来越成为研究的一个热点。

目前所报道的硅基光电探测器大多仅能在近红外波段或可见光波段实现光信号的高效吸收探测,全波段的探测器则鲜有报道。2008年,中国台湾报道了一种基于标准BiCMOS工艺的可见光SiGe/Si HPT探测器,该器件由一个SiGe/Si HPT和一个表面探测二极管构成,在Vce为0.5V偏压下,450nm>

发明内容

有鉴于此,本发明的主要目的是提供一种高效全波段光敏晶体管探测器,实现作为单一器件就可以兼顾可见光和近红外光波段的高效吸收。

1.基区Ge组分分段分布的SiGe/Si异质结光敏晶体管探测器,其特征在于包括:

Si衬底;在Si衬底上依次制备出的Si亚集电区、Si集电区、SiGe基区/吸收层、多晶Si发射区;探测器的光窗口位于SiGe基区/吸收层;SiGe 基区/吸收层的Ge组分分段分布,从发射结异质结到集电结异质结依次分为四段,其第一段的厚度介于0.02μm到0.05μm之间,Ge组分介于0到 20%之间,其第二段的厚度介于0.03μm到0.06μm之间,Ge组分介于20%到50%之间,其第三段的厚度介于0.06μm到0.09μm之间,Ge组分介于 50%到80%之间,其第四段的Ge组分线性减少到0,厚度介于0.02μm到 0.03μm之间。

SiGe基区/吸收层的Ge组分分段分布中第一段、第二段和其第三段, Ge组分的分布是均匀或渐变或均匀与渐变相组合的形式。

更具体的,一种基区Ge组分分段式分布的SiGe/Si异质结光敏晶体管探测器,包括:

Si衬底1;在Si衬底上依次制备出的Si亚集电区2、Si集电区3、SiGe 基区/吸收层4、多晶Si发射区5;发射极6,制作在多晶Si发射区5上;基极7,制作在SiGe基区/吸收层4上;集电极8,制作在Si亚集电区2上。

上述方案中Si衬底为p型Si衬底1,掺杂浓度≥1.0×1017cm-3且<1.0×1019cm-3,厚度介于0.8μm到1.2μm之间;

上述方案中Si亚集电区为n型Si亚集电区2,掺杂浓度≥1.0×1019cm-3且≤1.0×1021cm-3,厚度介于0.3μm到0.5μm之间;

上述方案中Si集电区为n型Si集电区3,掺杂浓度≥1.0×1017cm-3且≤1.0×1019cm-2,厚度介于0.6μm到0.7μm之间;

上述方案中SiGe基区/吸收层为p型SiGe基区/吸收层4,掺杂浓度≥1.0×1019cm-3且≤1.0×1021cm-3,厚度介于0.1μm到0.16μm之间;

上述方案中SiGe基区/吸收层中的Ge组分从发射结异质结到集电结异质结依次分为四段,其第一段的厚度介于0.02μm到0.05μm之间,Ge组分介于0到20%之间,Ge组分的分布可以是均匀或渐变或均匀与渐变相组合的形式;其第二段的厚度介于0.03μm到0.06μm之间,Ge组分介于20%到50%之间,Ge组分的分布可以是均匀或渐变或均匀与渐变相组合的形式;其第三段的厚度介于0.06μm到0.09μm之间,Ge组分介于50%到80%之间,Ge组分的分布可以是均匀或渐变或均匀与渐变相组合的形式;其第四段的Ge组分线性减少到0,厚度介于0.02μm到0.03μm之间;

上述方案中SiGe基区/吸收层4中Ge组分的第一段主要对应吸收波长较短的可见光;

上述方案中SiGe基区/吸收层4中Ge组分的第二段主要对应吸收波长较长的可见光和波长较短的近红外光;

上述方案中SiGe基区/吸收层4中Ge组分的第三段主要对应吸收波长较长的近红外光;

上述方案中SiGe基区/吸收层4中Ge组分的第四段可以减弱异质结势垒效应;

上述方案中光窗口位于SiGe基区/吸收层4没有被覆盖部分的上表面,使入射光直接照射在SiGe基区/吸收层上;

上述方案中多晶Si发射区为n型多晶Si发射区5,掺杂浓度≥1.0×1019cm-3且≤1.0×1021cm-3,厚度介于0.4μm到0.5μm之间。

附图说明

为进一步说明本发明的技术特征,结合以下附图,对本发明作一个详细的描述,其中:

图1是基区Ge组分分段分布的SiGe/Si异质结光敏晶体管探测器的二维结构示意图;

图2是器件SiGe基区/吸收层中的Ge组分分布曲线;

图3是器件在可见光波段和近红外光波段入射光下的吸收率曲线;

图4是器件在可见光波段和近红外光波段入射光下,当入射光强为 100W/cm2时的输出电流曲线。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚,以下结合具体实施例,并参照附图,对本发明进一步详细说明。

如图1所示,本发明实施例提供的基区Ge组分分段分布的SiGe/Si异质结光敏晶体管探测器包括:

Si衬底1;在Si衬底上依次制备出的Si亚集电区2、Si集电区3、SiGe 基区/吸收层4、多晶Si发射区5;发射极6,制作在多晶Si发射区5上;基极7,制作在SiGe基区/吸收层4上;集电极8,制作在Si亚集电区2上。

其中所述的Si衬底1为p型中等掺杂,掺杂浓度为 1.0×1018~1.5×1018cm-3,厚度为1μm;

其中所述的Si亚集电区2为n型重掺杂,掺杂浓度为 1.0×1019~1.5×1019cm-3,厚度为0.3μm;

其中所述的Si集电区3为n型中等掺杂,掺杂浓度为 9.5×1017~1.0×1018cm-3,厚度为0.6μm;

其中所述的SiGe基区/吸收层4为p型重掺杂,掺杂浓度为 1.0×1019~1.5×1019cm-3,厚度为0.16μm;

其中所述的SiGe基区/吸收层4中Ge组分从发射结异质结到集电结异质结依次分为四段,如图2所示,第一段厚度为0.03μm,厚度的前1/3范围内Ge组分从0线性增加到10%,之后保持10%不变;第二段厚度为0.05μm,厚度的前2/5范围内Ge组分从10%线性增加到50%,之后保持 50%不变;第三段厚度为0.06μm,厚度的前1/3范围内Ge组分从50%线性增加到80%,之后保持80%不变;第四段厚度为0.02μm,Ge组分从80%线性减少到0;

其中所述的SiGe基区/吸收层4,其没有被覆盖部分的上表面为SiGe/Si 异质结光敏晶体管探测器的光窗口;

其中所述的多晶Si发射区5为n型重掺杂,掺杂浓度为 1.0×1019~1.5×1019cm-3,厚度为0.3μm;

其中所述的多晶Si发射区5与SiGe基区/吸收层4形成发射结异质结,SiGe基区/吸收层4与Si集电区3形成集电结异质结。

上述SiGe基区/吸收层中Ge组分的第一段主要对应吸收波长较短的可见光;Ge组分的第二段主要对应吸收波长较长的可见光和波长较短的近红外光;Ge组分的第三段主要对应吸收波长较长的近红外光。当有可见光或近红外光照射SiGe基区/吸收层上的光窗口时,SiGe基区/吸收层中产生的光生电子被集电结耗尽层中的电场扫入Si集电区,进而传输至集电极,形成初始光生电流;SiGe基区/吸收层中产生的光生空穴被传输至发射结,降低了发射结势垒,引发光生电流的放大。如图3所示,本实施例中的SiGe/Si 异质结光敏晶体管探测器在可见光波段和近红外光波段入射光下的吸收率均在70%以上;如图4所示,本实施例中的SiGe/Si异质结光敏晶体管探测器在可见光波段和近红外光波段入射光下,当入射光强为100W/cm2时,输出电流均保持在1μA左右。

上述SiGe基区/吸收层4中的Ge组分阶梯型变化,可促使基区形成对光生电子加速的内建电场,减少光生电子在基区的渡越时间。在保证一定的发射效率的前提下线性减少发射结附近Ge含量可减小基区复合对器件增益的影响。同时集电结附近的Ge组分线性减少可消除一部分集电结处的能带差,从而消弱异质结势垒效应。

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号