首页> 中国专利> 两级增压系统与柴油机的匹配计算方法

两级增压系统与柴油机的匹配计算方法

摘要

本发明公开了一种两级高增压系统与柴油机的匹配计算方法,本发明的匹配计算方法,其步骤为:步骤一根据已知柴油机的相关参数,计算柴油机所需要的总空气质量流量和总压比;步骤二计算低压级增压器压气机的压比和空气容积流量,选择低压级增压器压气机规格;步骤三计算高压级增压器压气机的空气容积流量和增压比,选择高压级增压器压气机规格;步骤四计算高压级增压器涡轮端的膨胀比和进口温度,确定高压级增压器的涡轮规格;步骤五进行低压级涡轮的计算与选型;步骤六根据已选出的增压器规格,估算柴油机与增压器的联合运行线。

著录项

  • 公开/公告号CN106382155A

    专利类型发明专利

  • 公开/公告日2017-02-08

    原文格式PDF

  • 申请/专利权人 重庆江增船舶重工有限公司;

    申请/专利号CN201610840332.X

  • 申请日2016-09-22

  • 分类号F02B37/013(20060101);

  • 代理机构重庆蕴博君晟知识产权代理事务所(普通合伙);

  • 代理人王玉芝

  • 地址 402263 重庆市江津区德感工业园二期C幢1-14号

  • 入库时间 2023-06-19 01:29:48

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-11-27

    授权

    授权

  • 2017-03-08

    实质审查的生效 IPC(主分类):F02B37/013 申请日:20160922

    实质审查的生效

  • 2017-02-08

    公开

    公开

说明书

技术领域

本发明涉及一种涡轮增压器的匹配计算方法,特别涉及一种两级高增压系统与柴油机的匹配计算方法。

背景技术

废气涡轮增压器是船用大功率柴油机实现高功率密度、低油耗、低排放的关键部套件之一。随着IMO Tier III要求的逐步实施,使船用大功率柴油机不断向经济性和低排放方向发展。采用高压比、高效率增压系统是实现这一目标的有效途径。而两级增压比单级增压容易获得更高的增压压力,从而可使柴油机获得更高的平均有效压力。增压器的增压比越高,压气机和涡轮的效率越低,所以在给定的增压压力下,两级比单级效率高。同时,两级增压便于中间冷却,可以减少压缩功,提高压气机效率,同时降低柴油机的热应力。国内现在两级增压器匹配计算与分析、压比分配、匹配试验等方面的方法比较欠缺,在两级增压系统中增压器选型时范围增大,配机试验次数增多,导致增压器选型的时间与费用增加,影响了两级高增压系统的发展。

发明内容

为了解决两级增压系统与柴油机的匹配问题,本发明提供一种匹配计算方法,通过压气机本体、排温、增压器、中冷器等模型相关联的参数进行联合计算,确定两级增压器系统压比的分配,完成增压器规格的选择。

为了实现上述目的,本发明采用了以下技术方案:

两级增压系统与柴油机的匹配计算方法,其特征在于,包括以下步骤:

步骤一、根据已知柴油机的相关参数,计算柴油机所需要的总空气质量流量mvol和总压比π;

步骤二、根据步骤一中计算得出柴油机所需要的总压比π和总空气质量流量mvol,假定高、低压级增压器压气机压比分配比例,计算低压级增压器压气机的压比πdv和空气容积流量Vd298,选择低压级增压器压气机规格;

步骤三、根据步骤二中低压级压气机的出口空气质量流量mV、出口压力Pd2、出口温度td2及中冷器的压力损失ΔP1、温度损失Δt1,计算高压级增压器压气机的空气容积流量Vg298和增压比πgv,选择高压级增压器压气机规格;

步骤四、计算高压级增压器涡轮端的膨胀比πgt和进口温度tG1,确定高压级增压器的涡轮规格;

步骤五、根据步骤四求得的高压级涡轮的膨胀比πgt和涡轮前压力PG1可推出低压级涡轮增压器进口压力PD1,其出口压力为确定值,进行低压级涡轮的计算与选型;

进一步的,所述步骤一中柴油机所需要的总空气质量流量mvol和总压比π、分别通过式(1)、式(2)进行计算:

mvol=i×D2×S×n2×60×3.14164×Ps×105287.04×(t+273)×ϵϵ-1---(1)

π=(Ps-ΔPs)(P-ΔP)---(2)

其中,柴油机所需要的总空气质量流量mvol单位:kg/s;扫气温度t单位:℃;柴油机活塞直径D单位:m;柴油机活塞行程S单位:m;柴油机额定转速n单位:rpm;柴油机缸数i;扫气压力Ps单位:bar;扫气压力损失ΔPs单位:bar;大气压力P单位:bar;进气压力损失ΔP单位:bar;柴油机压缩比ε。

进一步的,所述步骤二中低压级增压器压气机的压比πdv和空气容积流量Vd298计算步骤如下:

柴油机总压比π计算公式(2)可转换为

π=(Ps-ΔPs)(P-ΔP)=Pd2Pd1×Pg2Pg1---(3)

其中,低压级空气出口压力Pd2单位:bar;低压级空气进口压力Pd1单位:bar;高压级空气出口压力Pg2单位:bar;高压级空气进口压力Pg1单位:bar。

空气进气管、消音器、中冷器产生0.01-0.015bar压力损失,第一次计算,忽略中冷器产生的压力损失,则Pd2≈Pg1,式(3)变为式(4),

π=Pd2Pd1×Pg2Pg1Pg2Pd1=πdv·πgv---(4)

其中,低压级增压器的压比:πdv,高压级增压器的压比:πgv

假定高、低压级增压器压气机的压比平均分配,则低压级增压器的压比πdv通过公式(5)进行计算

πdv=π---(5)

计算低压级压气机提供的空气质量流量mV,按式(6)、式(7)计算:

其中,低压级压气机的空气质量流量mV单位:kg/s;柴油机的总空气量mvol单位:kg/s;柴油机扫气系数:λ;柴油机充气效率:增压器台数:z;扫气温度t单位:℃。

的乘积表征气缸通过能力的参数,的乘积取值范围如下:

高速四冲程变压增压柴油机:

高速四冲程定压增压柴油机:

中速四冲程变压增压柴油机:

中速四冲程定压增压柴油机:

中速二冲程增压柴油机:

低速二冲程增压柴油机:

利用式(6)计算所得低压级压气机提供的空气质量流量mV,通过式(8)、(9)换算成容积流量Vd298

ρd298=(P-ΔP)×105287.04×(tv1+273)×298(tv1+273)---(8)

Vd298=mV298(9)

其中,298K温度下空气密度ρd298,单位:kg/m3;大气压力P单位:bar;进气压力损失ΔP单位:bar;环境温度tv1单位:℃;298K温度下低压级压气机的容积流量Vd298单位:m3/s;低压级压气机的空气质量流量mV单位:kg/s。

根据计算得到的压比πdv和流量Vd298选择低压级压气机的规格。

进一步的,所述步骤三中高压级增压器压气机的空气容积流量Vg298和压比πgv计算步骤下:

高压级增压器压气机的空气质量流量mG与低压级增压器压气机的空气质量流量mV相等,即

mG=mV>

Pg1=Pd2-ΔP1>

ρg298=Pg1×105287.04×(tg1+273)×298(tg1+273)---(12)

Vg298=mVg298>

πgv=π/πdv(14)

其中,高压级增压器压气机的空气质量流量mG单位:kg/s;低压级增压器压气机的空气质量流量mV单位:kg/s;高压级空气进口压力Pg1单位:bar;低压级压气机的出口压力Pd2单位:bar;中冷器的压力损失ΔP1单位:bar;高压级空气进口温度tg1单位:℃;298K温度下空气密度ρg298单位:kg/m3;298K温度下高压级压气机的容积流量Vg298单位:m3/s;高压级增压器的压比πgv;低压级增压器的压比πdv;柴油机总压比π。

根据计算得到的空气容积流量Vg298和压比πgv,选择高压级压气机的规格。

进一步的,所述步骤四中高压级增压器涡轮端的进口温度tG1和膨胀比πgt计算的具体步骤为:

a、先求柴油机有效效率ηc、活塞速度C、摩擦压力Pm、涡轮前可用热系数χ、总过量空气系数λa、废气成份κ、压气机后空气焓值Δhgv、涡轮前的废气焓值Δhgt1,如下式(15)至式(22):

柴油机有效效率:

活塞速度:

摩擦压力:Pm=0.1109×C+0.2691+(-0.0006104×C+0.0102)×Pb>

涡轮前可用热系数:

总过量空气系数:

废气成份:

压气机后的空气焓值:

Δhgv=0.28704×[3.525×(t+273)-11.25](21)

涡轮前的废气焓值Δhgt

Δhgt=χ×42700+Δhgv×λa×14.2λa×14.2+1---(22)

估算高压级增压器涡轮端的进口温度tG1

tG1=Δhgt/0.28704+82.77×κ+100.330.339×κ+3.701-273---(23)

其中,油耗率le,单位:kg/kw.h;柴油机活塞行程S,单位:m;柴油机额定转速n单位:rpm;柴油机爆压Pb单位:bar;柴油机额定功率Ne单位:KW;柴油机平均有效压力Pe单位:bar;空气消耗率ζe单位:kg/kw.h;总空气质量流量mz单位:kg/s;压气机后的空气焓值Δhsv单位:KJ/kg;扫气温度t单位:℃;涡轮前的废气焓值Δhgt单位:KJ/kg;高压级增压器涡轮端的进口温度tG1单位:℃。

b、按如下步骤求高压级涡轮膨胀比πgt

压气机的绝热焓降Δhsv

Δhsv=kk-1×R×(tg+273)×(πgv0.2857-1)---(24)

其中:增压器空气进口温度tg,单位:℃;高压级增压器压气机压比πgv;高压级压气机的绝热焓降Δhsv单位:KJ/kg。

假定增压器总效率ηTC

ηTC=ΔhsvΔhst×mzmz+mB---(25)

式中燃油流量

Δhst=Δhsv×mzηTC×(mz+mB)---(27)

Δhst=ktkt-1×Rt×(tG1+273)×(πgt0.2504-1)---(28)

其中:涡轮焓降Δhst单位:KJ/kg;总空气质量流量mz单位:kg/s。

由式(28)可求得涡轮膨胀比πgt

求得在定压系统中单台增压器涡轮的热力学当量面积STeff

STeff=mT×(tG1+273)×287.04PG1×0.676×10×z---(29)

mT=mz×(1+ζele)=mz+mB---(30)

其中,高压级增压器涡轮进口压力PG1单位:bar;高压级增压器涡轮的进口温度tG1单位:℃;燃气流量mT单位:kg/s,增压器台数:z。

c、通过计算得到的涡轮膨胀比πgt与涡轮热力学当量面积STeff值查找出其需要的涡轮产品规格,用涡轮真实效率ηgt校核之前假定的增压器总效率ηTC

若ηTC≤ηgt×ηgv,则可满足要求,进行下一步的计算,如结果不能满足要求,则重新用计算结果再次从(25)式开始新一轮计算,直到ηTC≤ηgt×ηgv

进一步的,所述步骤五中高压级增压器涡轮出口压力PG2与低压级的涡轮进口压力PD1相等,即

PG2=PD1(31)

根据求得高压级涡轮膨胀比πgt和涡轮前压力PG1,可推导出低压级涡轮增压器进口压力PD1,即

PG2=PD1=PG1πgt---(32)

低压级涡轮增压器出口压力为1.03bar,则此时涡轮膨胀比为:

πdt=PD1/1.03>

假定增压器总效率ηTL

ηTL=ΔhsvΔhST×mzmz+mB---(34)

重复式(26)至(30)的计算,得到低压级涡轮的热力学当量面积STeff

通过计算得到的涡轮膨胀比πdt与涡轮热力学当量面积STeff值查找出其需要的涡轮产品规格,用涡轮真实效率ηdt校核之前假定的增压器总效率ηTL

若ηTL≤ηdt×ηdv,则可满足要求,如结果不能满足要求,则重新用计算结果再次从式(34)式开始新一轮计算,直到ηTL≤ηdt×ηdv

进一步的,根据计算选择的增压器选型规格,在高压级与低压级的压气机MAP图上进行计算拟合,估算柴油机与增压器的联合运行线。

本发明的有益技术效果是:本发明解决了两级增压系统与柴油机匹配过程中,因传统匹配计算方法需要较多参数,实际应用中用户无法提供,需要更多相关经验总结或公式来估算未知细节参数,导致增压器匹配计算繁琐复杂的问题。该方法能够在没有硬件的条件下对增压器的性能进行预测,为涡轮增压器的设计提供可借鉴的性能数据,使涡轮增压器的匹配过程更快速、有效,完全达到简易增压器匹配选型的要求,在很大程度上减少了配机试验次数,大大节约了增压器选型的费用。

附图说明

图1为本实施例两级高增压系统原理图;

图2为本发明实施例低压级增压器压气机与柴油机的联合运行线;

图3为本发明实施例高压级增压器压气机与柴油机的联合运行线;

附图标记:1.空气滤清器;2.低压级压气机;3.级间冷却器;4.高压级压气机;5.后冷却器;6.发动机;7.高压级涡轮机;8.低压级涡轮机;9.消音器。

具体实施方式

本发明实施例两级增压系统构成如图1所示,由空气滤清器1、低压级压气机2、级间冷却器3、高压级压气机4、后冷却器5、发动机6、高压级涡轮机7、低压级涡轮机8、消音器9及空气旁通阀、废气旁通阀等部件组成,该两级增压系统与柴油机选择匹配时,计算方法如下:

步骤一、根据已知柴油机的相关参数,计算柴油机所需要的总空气质量流量mvol和总压比π;

步骤二、根据步骤一中计算得出柴油机所需要的总压比π和总空气质量流量mvol,假定高、低压级增压器压气机压比分配比例,计算低压级增压器压气机的压比πdv和空气容积流量Vd298,选择低压级增压器压气机规格;

步骤三、根据步骤二中低压级压气机的出口空气质量流量mV、出口压力Pd2、出口温度td2及中冷器的压力损失ΔP1、温度损失Δt1,计算高压级增压器压气机的空气容积流量Vg298和增压比πgv,选择高压级增压器压气机规格;

步骤四、计算高压级增压器涡轮端的膨胀比πgt和进口温度tG1,确定高压级增压器的涡轮规格;

步骤五、根据步骤四求得的高压级涡轮的膨胀比πgt和涡轮前压力PG1可推出低压级涡轮增压器进口压力PD1,其出口压力为确定值,进行低压级涡轮的计算与选型;

具体计算实施过程如下:

步骤一中柴油机所需要的总空气质量流量mvol和总压比π、分别通过式(1)、式(2)进行计算:

mvol=i×D2×S×n2×60×3.14164×Ps×105287.04×(t+273)×ϵϵ-1---(1)

π=(Ps-ΔPs)(P-ΔP)---(2)

将扫气温度t=45℃,柴油机活塞直径D=0.21m,柴油机活塞行程S=0.32m,柴油机额定转速n=1000rpm,柴油机缸数i=6,扫气压力Ps=5.197bar,扫气压力损失ΔPs=0.01bar,大气压力P=1bar,进气压力损失ΔP=0.015bar;柴油机压缩比ε=15.5代入式(1)、式(2)计算可得

mvol=3.373kg/s

π=5.286

进一步的,所述步骤二中低压级增压器压气机的压比πdv和空气容积流量Vd298计算步骤如下:

柴油机总压比π计算公式(2)可转换为

π=(Ps-ΔPs)(P-ΔP)=Pd2Pd1×Pg2Pg1---(3)

其中,低压级空气出口压力Pd2单位:bar;低压级空气进口压力Pd1单位:bar;高压级空气出口压力Pg2单位:bar;高压级空气进口压力Pg1单位:bar。

空气进气管、消音器、中冷器产生0.01-0.015bar压力损失,第一次计算,忽略中冷器产生的压力损失,则Pd2≈Pg1,式(3)变为式(4),

π=Pd2Pd1×Pg2Pg1Pg2Pd1=πdv·πgv---(4)

其中,低压级增压器的压比:πdv,高压级增压器的压比:πgv

假定高、低压级增压器压气机的压比平均分配,则低压级增压器的压比πdv通过公式(5)进行计算

πdv=π=2.299---(5)

计算低压级压气机提供的空气质量流量mV,按式(6)、式(7)计算:

将柴油机的总空气量mvol=3.373kg/s,柴油机扫气系数λ=1.25,增压器台数z=2,扫气温度t=45℃,代入式(6)、式(7)计算可得

mV=1.913kg/s

的乘积表征气缸通过能力的参数,的乘积取值范围如下:

高速四冲程变压增压柴油机:

高速四冲程定压增压柴油机:

中速四冲程变压增压柴油机:

中速四冲程定压增压柴油机:

中速二冲程增压柴油机:

低速二冲程增压柴油机:

(船用高速柴油机转速n>1000rpm、船用中速柴油机转速300rpm<n≤1000rpm、船用低速柴油机转速n≤300rpm)

利用式(6)计算所得低压级压气机提供的空气质量流量mV,通过式(8)、式(9)换算成容积流量Vd298

ρd298=(P-ΔP)×105287.04×(tv1+273)×298(tv1+273)---(8)

Vd298=mV298>

将大气压力P=1bar,进气压力损失ΔP=0.015bar,环境温度tv1=25℃,低压级压气机提供的空气质量流量mV=1.913kg/s代入式(8)、式(9)计算可得

ρd298=1.152kg/m3

Vd298=1.661m3/s

根据计算得到的压比πdv和流量Vd298选择低压级压气机的规格JTH210/005>

进一步的,所述步骤三中高压级增压器压气机的空气容积流量Vg298和压比πgv计算步骤下:

高压级增压器压气机的空气质量流量mG与低压级增压器压气机的空气质量流量mV相等,即

mG=mV>

Pg1=Pd2-ΔP1>

ρg298=Pg1×105287.04×(tg1+273)×298(tg1+273)---(12)

Vg298=mVg298(13)

πgv=π/πdv(14)

将高压级增压器压气机的空气质量流量mV=1.913kg/s,低压级压气机的出口压力Pd2=2.288bar,中冷器的压力损失ΔP1=0.005bar,高压级空气进口温度tg1=40℃,低压级增压器的压比πdv=2.299;柴油机总压比π=5.286代入式(11)、式(12)、式(13)、式(14)计算可得

Vg298=0.791m3/s

πgv=2.299

根据计算得到的空气容积流量Vg298和压比πgv选择高压级压气机的规格JTH180/004>

进一步的,所述步骤四中高压级增压器涡轮端的进口温度tG1和膨胀比πgt计算的具体步骤为:

a、先求柴油机有效效率ηc、活塞速度C、摩擦压力Pm、涡轮前可用热系数χ、总过量空气系数λa、废气成份κ、压气机后空气焓值Δhgv、涡轮前的废气焓值Δhgt1,如下式(15)至式(22):

柴油机有效效率:

活塞速度:

摩擦压力:Pm=0.1109×C+0.2691+(-0.0006104×C+0.0102)×Pb>

涡轮前可用热系数:

总过量空气系数:

废气成份:

压气机后的空气焓值:

Δhgv=0.28704×[3.525×(t+273)-11.25](21)

涡轮前的废气焓值Δhgt

Δhgt=χ×42700+Δhgv×λa×14.2λa×14.2+1---(22)

估算高压级增压器涡轮端的进口温度tG1

tG1=Δhgt/0.28704+82.77×κ+100.330.339×κ+3.701-273---(23)

将油耗率le=0.219kg/kw.h,将柴油机活塞行程S=0.32m,柴油机额定转速n=1000rpm,柴油机爆压Pb=200bar,柴油机平均有效压力Pe=27.1bar,柴油机额定功率Ne=1500KW,总空气质量流量mz=mV+mG=3.825kg/s,扫气温度t=45℃代入式(15)至式(23)可得

ηc=0.385

C=10.67m/s

Pm=2.186bar

χ=0.504

λa=2.952

κ=0.354

Δhsv=318.528KJ/kg

Δhgt=812.477KJ/kg

tG1=502℃

b、按如下步骤求高压级涡轮膨胀比πgt

压气机的绝热焓降Δhsv

Δhsv=kk-1×R×(tg+273)×(πgv0.2857-1)---(24)

将增压器空气进口温度tg=25℃;高压级增压器压气机压比πgv=2.299代入式(24)可得

Δhsv=80413.33KJ/kg

假定增压器总效率ηTC=0.63

ηTC=ΔhsvΔhst×mzmz+mB---(25)

式中燃油流量

Δhst=Δhsv×mzηTC×(mz+mB)---(27)

Δhst=ktkt-1×Rt×(tG1+273)×(πgt0.2504-1)---(28)

将增压器总效率ηTC=0.63,油耗率le=0.219kg/kw.h,柴油机额定功率Ne=1500KW,总空气质量流量mz=3.825kg/s,tG1=502℃代入式(25)至(28)可得

mB=0.091kg/s

Δhst=124705.1KJ/kg

πgt=2.09

求得在定压系统中单台增压器涡轮的热力学当量面积STeff

STeff=mT×(tG1+273)×287.04PG1×0.676×10×z---(29)

mT=mz×(1+ζele)=mz+mB---(30)

将高压级增压器涡轮进口压力PG1=5.165bar,高压级增压器涡轮的进口温度tG1=502℃;燃气流量mT=3.916kg/s,增压器台数z=2代入式(29)可得

STeff=26.45cm2

c、通过计算得到的涡轮膨胀比πgt与涡轮热力学当量面积STeff值查找出涡轮产品规格JTH180/004>gt校核之前假定的增压器总效率ηTC

若ηTC≤ηgt×ηgv,则可满足要求,进行下一步的计算,如结果不能满足要求,则重新用计算结果再次从(26)式开始新一轮计算,直到ηTC≤ηgt×ηgv

本实施例中,高压级增压器涡轮真实效率ηgt=0.83,高压级增压器压气机真实效率ηgv=0.80,ηgt×ηgv=0.664,而增压器总效率ηTC=0.63,ηTC≤ηgt×ηgv,结果满足要求。

进一步的,所述步骤五中高压级增压器涡轮出口压力PG2与低压级的涡轮进口压力PD1相等,即

PG2=PD1>

根据求得高压级涡轮膨胀比πgt=2.24,涡轮前压力PG1=5.165bar,可推导出低压级涡轮增压器进口压力PD1,即

PG2=PD1=PG1πgt=2.306bar---(32)

低压级涡轮增压器出口压力为1.03bar,则此时涡轮膨胀比为:

πdt=PD1/1.03=2.239bar(33)

假定增压器总效率ηTL=0.62

ηTL=ΔhsvΔhST×mzmz+mB---(34)

重复式(26)至(30)的计算,得到低压级涡轮的热力学当量面积STeff

STeff=55.12cm2

通过计算得到的涡轮膨胀比πdt与涡轮热力学当量面积STeff值查找出涡轮产品规格JTH210/005>dt校核之前假定的增压器总效率ηTL

若ηTL≤ηdt×ηdv,则可满足要求,如结果不能满足要求,则重新用计算结果再次从式(34)式开始新一轮计算,直到ηTL≤ηdt×ηdv

本实施例中,低压级增压器涡轮真实效率ηdt=0.81,低压级增压器压气机真实效率ηdv=0.80,ηgt×ηgv=0.648,增压器总效率ηTL=0.62,ηTL≤ηdt×ηdv,结果满足要求。

进一步的,根据计算选择的增压器规格,在高压级与低压级的压气机MAP图上进行计算拟合,估算柴油机与增压器的联合运行线,如图2、3所示。

本发明的有益技术效果是:本发明解决了两级增压系统与柴油机匹配过程中,因传统匹配计算方法需要较多参数,实际应用中用户无法提供,需要更多相关经验总结或公式来估算未知细节参数,导致增压器匹配计算繁琐复杂的问题。该方法能够在没有硬件的条件下对增压器的性能进行预测,为涡轮增压器的设计提供可借鉴的性能数据,使涡轮增压器的匹配过程更快速、有效,完全达到简易增压器匹配选型的要求,在很大程度上减少了配机试验次数,大大节约了增压器选型的费用。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号