首页> 中国专利> 机载双天线InSAR三维构像模型构建方法

机载双天线InSAR三维构像模型构建方法

摘要

本发明公开了机载双天线InSAR三维构像模型构建方法,包括如下步骤:步骤1:确定机载双天线InSAR三维构像模型涉及到的移动坐标系、成像辅助坐标系和局地切平面坐标系;步骤2:根据机载双天线InSAR构像的几何关系用移动坐标系下的单位视向量

著录项

  • 公开/公告号CN106371096A

    专利类型发明专利

  • 公开/公告日2017-02-01

    原文格式PDF

  • 申请/专利权人 中国科学院遥感与数字地球研究所;

    申请/专利号CN201610685183.4

  • 发明设计人 韩春明;岳昔娟;赵迎辉;

    申请日2016-08-18

  • 分类号G01S13/90;

  • 代理机构北京纽乐康知识产权代理事务所(普通合伙);

  • 代理人丁伟

  • 地址 100094 北京市海淀区邓庄南路9号

  • 入库时间 2023-06-19 01:28:23

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-01-14

    授权

    授权

  • 2017-03-01

    实质审查的生效 IPC(主分类):G01S13/90 申请日:20160818

    实质审查的生效

  • 2017-02-01

    公开

    公开

说明书

技术领域

本发明涉及雷达摄影测量技术领域,具体来说,涉及机载双天线InSAR三维构像模型构建方法。

背景技术

SAR影像像素与对应地物在几何上没有类似光学成像的直接对应关系,SAR影像像素与地物对应关系也受具体的成像处理方法的影响。目前还没有通用的机载SAR成像算法,因此在进行SAR定位时首先需要明确成像处理采用的几何关系,来确定相应的构像模型。通过构像模型解算,将机载SAR影像坐标转换到通用的参考坐标(如地理坐标或平面坐标,我国一般都采用高斯平面坐标)。

SAR系统以一定角度向地面发射线性调频电磁波,通过距离向压缩和方位向合成孔径处理获得地面高分辨率图像,图像与地物是以理想航迹为轴等距投影,每一个像素可以位于同心圆上任一点,仅仅利用单幅SAR影像无法确定每个像元的三维坐标。InSAR数据能够提供两个视角的图像,根据空中三角关系能够确定地物三维坐标,已成为当前测绘困难地区数据获取和测图的重要手段。

机载InSAR三维构像模型是描述地面目标三维空间坐标与对应雷达影像上像点的方位向和距离向二维坐标的映射关系的数学模型,是进行SAR影像三维定位和高精度地形测量的基础。InSAR是利用SAR复数据的相位信息、SAR系统测距信息、基线长度、基线倾角、天线相位中心位置来获取三维地形信息,基于机载InSAR系统的成像几何关系,建立起相位信息、InSAR系统参数与地面目标点之间的几何关系。距离方程、多普勒方程和干涉相位方程描述了InSAR基本测量值和地面目标点位置之间的关系,为InSAR定位的三个基本方程,融合了有关地面目标位置的所有信息,通过求解三个方程构成的联立方程组可以确定地面目标点的三维位置。

发明内容

本发明的目的是提供机载双天线InSAR三维构像模型构建方法,以克服目前现有技术存在的上述不足。

为实现上述技术目的,本发明的技术方案是这样实现的:

一种机载双天线InSAR三维构像模型构建方法,包括如下步骤:

步骤1:确定机载双天线InSAR三维构像模型构建涉及的移动坐标系、成像辅助坐标系和局地切平面坐标系;

步骤2:根据机载双天线InSAR构像的几何关系用移动坐标系下的单位视向量表示目标位置P,目标位置P表示为:

式中:为天线Ai的在局地切平面坐标系内的位置向量,为地面目标点P点的位置向量,为天线Ai到P点的斜距向量,称为视向量,i=1,2;天线相位中心位置向量通过成像处理系统来确定,为基线向量,斜距r1由雷达测距得到;

步骤3:确定目标位置P在移动坐标系中的单位视向量

步骤4:确定机载双天线InSAR三维构像模型,进一步包括:

步骤4.1:将移动坐标系中的单位视向量转换到成像辅助坐标系;

步骤4.2:将成像辅助坐标系下的单位视向量变换到局地切平面坐标系中,进行三维定位。

进一步的,所述的步骤1包括:

步骤1.1:确定移动坐标系vnw:以主天线相位中心为原点,v轴与主天线参考航迹重合;n轴与v轴垂直,且n轴的方向平行于基线向量;vnw构成右手坐标系;

步骤1.2:确定局地切平面坐标系XYZ:所述的局地切平面坐标系的坐标原点为主天线参考航迹中点在水平面的投影,X轴平行于纬线且方向向东,Y轴垂直于纬线且方向向北,XYZ构成右手坐标系;

步骤1.3:确定成像辅助坐标系x’y’z’:成像辅助坐标系的坐标原点和移动坐标系的坐标原点重合,x’轴平行于主天线参考航迹在局地切平面投影,z’轴与局地切平面坐标系的Z轴平行,方向向上,x’y’z’构成右手坐 标系。

进一步的,所述的步骤2包括:机载双天线InSAR的两幅天线固定在刚性平台上,斜视角β为视向量与v轴夹角的余角,θ1为基线向量和视向量r1的夹角,定义为基视角;θL为视向量与ω轴负方向的夹角;基线长度为

进一步的,所述的步骤3包括:

步骤3.1:由多普勒方程:

可以计算出

步骤3.2:据基线向量B得到:

再根据相位方程式:

得到

代入上面得到的中可解得

步骤3.3:在根据可得

步骤3.4:可以得到单位视向量在移动坐标系下的表示为:

根据基视角可得:

根据斜视角的定义和多普勒方程:

根据向量的空间几何关系,由于ξ1可用单位视向量夹角的余弦值表示:

ξ1=cos(π-θL)=-cosθL

则移动坐标系下的单位视向量表示为:

进一步的,所述的步骤4.1包括:将移动坐标系中的单位视向量转换到成像辅助坐标系,其中:

从移动坐标系到成像辅助坐标系的旋转矩阵为:

其中,θp为飞机参考航迹不与局地切平面平行时所形成的夹角,

得到成像辅助坐标系下的单位视向量。

进一步的,步骤4.2中:将成像辅助坐标系下的单位视向量变换到局地切平面坐标系中,进行三维定位,其中

从成像辅助坐标系到局地切平面坐标系,旋转矩阵为:

其中θy为像辅坐标系的x’轴与局地切平面坐标系X轴夹角,

局地切平面坐标系中三维构像模型为:

局地切平面坐标系中机载InSAR三维构像模型为:

进一步的,当斜视角β=0°和俯仰角θp=0°时,此时参考航迹平行局地切平面、正侧视,机载InSAR三维构像模型简化为:

采用上述技术方案后,本发明具有如下的有益效果:机载InSAR构像模型的构建和解算是机载InSAR高精度定位的核心环节,是解决困难地区大面 积、稀少控制条件下地形测图的关键技术,同时对于突发性自然灾害的监测、评估的快速响应和定量分析等具有重要意义。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。

图1是本发明的机载双天线InSAR三维构像模型的几何关系;

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其它实施例,都属于本发明保护的范围。

如图1所示,本发明实施例所述的机载双天线InSAR三维构像模型构建方法,包括如下步骤:

步骤1:确定机载双天线InSAR三维构像模型构建涉及的移动坐标系、成像辅助坐标系和局地切平面坐标系;

步骤2:根据机载双天线InSAR构像的几何关系用移动坐标系下的单位视向量表示目标位置P,目标位置P表示为:

式中:为天线Ai的在局地切平面坐标系内的位置向量,为地面目标点P点的位置向量,为天线Ai到P点的斜距向量,称为视向量,i=1,2;天线相位中心位置向量通过成像处理系统来确定,为基线向量,斜距r1由雷达测距得到;

步骤3:确定目标位置P在移动坐标系中的单位视向量

步骤4:确定机载双天线InSAR三维构像模型,进一步包括:

步骤4.1:将移动坐标系中的单位视向量转换到成像辅助坐标系;

步骤4.2:将成像辅助坐标系下的单位视向量变换到局地切平面坐标系中,进行三维定位。

其中,所述的步骤1包括:

步骤1.1:确定移动坐标系vnw:以主天线相位中心为原点,v轴与主天线参考航迹重合;n轴与v轴垂直,且n轴的方向平行于基线向量;vnw构成右手坐标系;

步骤1.2:确定局地切平面坐标系XYZ:所述的局地切平面坐标系的坐标原点为主天线参考航迹中点在水平面的投影,X轴平行于纬线且方向向东,Y轴垂直于纬线且方向向北,XYZ构成右手坐标系;

步骤1.3:确定成像辅助坐标系x’y’z’:成像辅助坐标系的坐标原点和移动坐标系的坐标原点重合,x’轴平行于主天线参考航迹在局地切平面投影,z’轴与局地切平面坐标系的Z轴平行,方向向上,x’y’z’构成右手坐标系。

其中,所述的步骤2包括:机载双天线InSAR的两幅天线固定在刚性平台上,斜视角β为视向量与v轴夹角的余角,θ1为基线向量和视向量r1的夹角,定义为基视角;θL为视向量与ω轴负方向的夹角;基线长度为

其中,所述的步骤3包括:

步骤3.1:由多普勒方程:

可以计算出

步骤3.2:据基线向量B得到:

再根据相位方程式:

得到

代入上面得到的中可解得

步骤3.3:在根据可得

步骤3.4:可以得到单位视向量在移动坐标系下的表示为:

根据基视角可得:

根据斜视角的定义和多普勒方程:

根据向量的空间几何关系,由于ξ1可用单位视向量夹角的余弦值表示:

ξ1=cos(π-θL)=-cosθL

则移动坐标系下的单位视向量表示为:

其中,所述的步骤4.1包括:将移动坐标系中的单位视向量转换到成像辅助坐标系,其中:

从移动坐标系到成像辅助坐标系的旋转矩阵为:

其中,θp为飞机参考航迹不与局地切平面平行时所形成的夹角,

得到成像辅助坐标系下的单位视向量。

其中,步骤4.2中:将成像辅助坐标系下的单位视向量变换到局地切平面坐标系中,进行三维定位,其中

从成像辅助坐标系到局地切平面坐标系,旋转矩阵为:

其中θy为像辅坐标系的x’轴与局地切平面坐标系X轴夹角。

局地切平面坐标系中三维构像模型为:

局地切平面坐标系中机载InSAR三维构像模型为:

当斜视角β=0°和俯仰角θp=0°时,此时参考航迹平行局地切平面、正>

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号