首页> 中国专利> 基于石墨烯场效应晶体管的太赫兹探测器及其制备方法

基于石墨烯场效应晶体管的太赫兹探测器及其制备方法

摘要

本发明提供了一种基于石墨烯场效应晶体管的太赫兹探测器及其制备方法,该探测器由下至上包括栅极、衬底层、绝缘层、金属电极层、石墨烯沟道层,金属电极层包括金属电极阵列以及位于金属图形阵列两侧的源极和漏极,金属电极阵列包括多个周期性间隔排列的金属电极,金属电极、源极和漏极的厚度相同,石墨烯沟道层形成在金属电极层上,且石墨烯沟道层全部覆盖金属电极阵列以及至少部分覆盖源极和漏极。通过上述方式,本发明能够提高探测器对太赫兹辐射的吸收率。

著录项

  • 公开/公告号CN106129135A

    专利类型发明专利

  • 公开/公告日2016-11-16

    原文格式PDF

  • 申请/专利权人 电子科技大学;

    申请/专利号CN201610576141.7

  • 申请日2016-07-20

  • 分类号H01L31/0224(20060101);H01L31/0232(20140101);H01L31/028(20060101);H01L31/0352(20060101);H01L31/113(20060101);H01L31/18(20060101);

  • 代理机构成都华风专利事务所(普通合伙);

  • 代理人胡川

  • 地址 611731 四川省成都市高新西区西源大道2006号

  • 入库时间 2023-06-19 00:54:59

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-12-08

    授权

    授权

  • 2016-12-14

    实质审查的生效 IPC(主分类):H01L31/0224 申请日:20160720

    实质审查的生效

  • 2016-11-16

    公开

    公开

说明书

技术领域

本发明涉及太赫兹探测技术领域,特别是涉及一种基于石墨烯场效应晶体管的太赫兹探测器及其制备方法。

背景技术

太赫兹(Terahertz)频段位于红外和微波之间,泛指频率在0.1~10THz波段内的电磁波。相比于其他频段电磁波,太赫兹辐射具有很多独特的特性,如脉宽在皮秒量级、单个脉冲频带宽、光子能量低、惧水性,且许多生物大分子的振动频率在太赫兹频段,许多非极性材料对太赫兹辐射吸收很小等。因此,太赫兹技术在军事及民用方面有巨大的应用前景,如太赫兹时域光谱技术、太赫兹雷达、太赫兹探测成像等,其中,太赫兹探测器是太赫兹技术的一个重要应用方面。

一些典型的太赫兹探测器包括基于热电效应的微测辐射热计、热释电探测器、等离子波探测器及肖特基二极管及量子阱探测器,其中基于热电效应的微测辐射热计及热释电探测器可以在一定范围内探测太赫兹辐射,但其存在探测率低、响应速率慢、响应率低且噪音大等一系列问题,而基于光电效应的量子阱探测器需要复杂的制冷装置以保持低温工作。等离子波探测器是一种连续可调探测器,受激发的等离子波可以与太赫兹波发生共振产生光电流从而探测太赫兹辐射。基于场效应晶体管的等离子波太赫兹探测器具有响应速度快、响应度高、通过改变栅长可增大探测范围且等离子共振可在室温下实现无需复杂的制冷设备等优势。

石墨烯(Grahpene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,其具有优异的机械、电学、热学及光学性能,自2004年Novoselov和Geim的团队用机械剥离法制备出室温存在的单层石墨烯以来,其已逐渐成为研究的热点。已有研究表明,利用基于石墨烯材料的场效应晶体管可以实现对太赫兹辐射的探测,2008年日本Ryzhii等(Ryzhii V,Mitin V,Ryzhii M,et al.Device model for graphene nanoribbon phototransistor[J].Applied physics express,2008,1(6):063002.)提出了石墨烯纳米带光电晶体管的理论模型,指出石墨烯有望用于研制远红外及太赫兹波段探测器,在此以后多种不同结构的基于石墨烯场效应晶体管的太赫兹探测器被设计出来。2013年,美国Muraviev等(Muraviev A V,etc.Plasmonic and bolometric terahertz detection by graphene field-effect transistor.2013Appl.Phys.Lett.103 181114)研究了背栅结构的石墨烯场效应晶体管(GFET)太赫兹探测器,其发现石墨烯场效应管对太赫兹辐射的探测机理分为两种:一种是等离子体波模式;另一种是热辐射模式,并实现了对2.5THz太赫兹辐射的探测,其响应率为150μV/W。

由于石墨烯很高的室温载流子迁移率(2×105cm2/Vs,是硅的100倍)及特殊的零禁带宽度结构,利用石墨烯场效应晶体管作为太赫兹探测器,可以同时实现高速、宽频带太赫兹探测器,具有极大的应用前景,但由于石墨烯对太赫兹辐射的吸收很低,只有2.3%,这极大的限制了石墨烯场效应晶体管太赫兹探测器的性能,所以目前迫切需要提高该器件对太赫兹辐射的吸收率。

发明内容

本发明主要解决的技术问题是提供一种基于石墨烯场效应晶体管的太赫兹探测器及其制备方法,能够提高探测器对太赫兹辐射的吸收率。

为解决上述技术问题,本发明采用的一个技术方案是:提供一种基于石墨烯场效应晶体管的太赫兹探测器及其制备方法,包括栅极、衬底层、绝缘层、金属电极层、石墨烯沟道层,所述栅极形成在所述衬底层下表面,所述绝缘层形成在所述衬底层上表面,所述金属电极层形成在所述绝缘层上,所述金属电极层包括金属电极阵列以及位于所述金属图形阵列两侧的源极和漏极,所述金属电极阵列包括多个周期性间隔排列的金属电极,所述金属电极、所述源极和所述漏极的厚度相同,所述石墨烯沟道层形成在所述金属电极层上,且所述石墨烯沟道层全部覆盖所述金属电极阵列以及至少部分覆盖所述源极和所述漏极。

优选地,所述金属电极的形状为十字架形。

优选地,所述金属电极的边长为10~100μm,线宽为1~6μm,相邻两个金属电极的间距为1~10μm。

优选地,所述石墨烯沟道层为单层或多层石墨烯薄膜。

优选地,所述栅极、所述源极、所述漏极和所述金属电极的材料为Al、Au、Ni、Cu、NiCr或Ag,所述栅极、所述源极、所述漏极和所述金属电极的厚度均为0.05~1μm。

优选地,所述衬底层为高聚物柔性导电薄膜,所述衬底层的厚度为5~300μm。

优选地,所述绝缘层的材料为SiO2、Si3N4、MgO或MnO2,所述绝缘层的厚度为0.05~1μm。

为解决上述技术问题,本发明采用的另一个技术方案是:提供一种基于石墨烯场效应晶体管的太赫兹探测器的制备方法,所述制备方法包括:提供衬底层,清洗所述衬底层并吹干后在所述衬底层的下表面沉积得到栅极;在所述衬底层的上表面沉积得到绝缘层;在所述绝缘层上沉积得到金属前置层;采用光刻工艺对所述金属前置层进行刻蚀得到金属电极层,其中,所述金属电极层包括金属电极阵列以及位于所述金属图形阵列两侧的源极和漏极,所述金属电极阵列包括多个周期性间隔排列的金属电极;在所述金属电极层上转移得到石墨烯沟道层,其中,所述石墨烯沟道层全部覆盖所述金属电极阵列以及至少部分覆盖所述源极和所述漏极。

区别于现有技术的情况,本发明的有益效果是:通过将石墨烯场效应晶体管设置为背栅式,并在探测器的绝缘层表面集成一层金属电极阵列,将衬底层及绝缘层作为超材料结构的复合介质层,栅极作为反射层,使底层的反射层、中间的复合介质层和顶层的金属电极阵列构成太赫兹超材料吸波器,从而能够探测器对太赫兹辐射的吸收率,并且本发明所提出的器件结构可实现柔性衬底的高响应、高速室温太赫兹探测器。

附图说明

图1是本发明实施例基于石墨烯场效应晶体管的太赫兹探测器的主视结构示意图。

图2是本发明实施例基于石墨烯场效应晶体管的太赫兹探测器的俯视结构示意图。

图3是采用本发明实施例的太赫兹探测器对入射太赫兹辐射的吸收曲线图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

参阅图1和图2,本发明实施例基于石墨烯场效应晶体管的太赫兹探测器包括栅极10、衬底层11、绝缘层12、金属电极层13、石墨烯沟道层14。

栅极10形成在衬底层11下表面。在本实施例中,衬底层11为高聚物柔性导电(PVDF)薄膜,衬底层11的厚度为5~300μm,本实施例优选为20μm。由于衬底层11具有柔性,使得太赫兹探测器也具有柔性,进而太赫兹探测器能够应用于多种场合。

绝缘层12形成在衬底层11上表面。在本实施例中,绝缘层12的材料为SiO2、Si3N4、MgO或MnO2,绝缘层12的厚度为0.05~1μm。

金属电极层13形成在绝缘层12上,金属电极层13包括金属电极阵列以及位于金属图形阵列两侧的源极132和漏极133,金属电极阵列包括多个周期性间隔排列的金属电极131,金属电极131、源极132和漏极133的厚度相同。在本实施例中,栅极10、源极132、漏极133和金属电极131的材料为Al、Au、Ni、Cu、NiCr或Ag,栅极10、源极132、漏极133和金属电极131的厚度均为0.05~1μm,本实施例优选为0.2μm。

在本实施例中,金属电极131的形状为十字架形,且金属电极131的边长为10~100μm,线宽为1~6μm,相邻两个金属电极131的间距为1~10μm。作为本实施例的优选方案,金属电极131的边长为60μm,线宽为3μm,相邻两个金属电极131的间距为10μm。

石墨烯沟道层14形成在金属电极层13上,且石墨烯沟道层14全部覆盖金属电极阵列以及至少部分覆盖源极132和漏极133。也就是说,石墨烯沟道层14与金属电极131、源极132和漏极133紧贴,而石墨烯沟道层14未与金属电极131接触的部分处于架空。

其中,栅极10、衬底层11、绝缘层12和金属电极阵列可以构成超材料结构。超材料结构是由周期或非周期的亚波长单元结构组成的新型人工材料,由顶层的金属层、中间的介质层及底层的连续金属薄膜反射层构成,其基本工作原理是入射电磁波在空气-表面金属结构界面及底部反射面的多次反射折射引起的相消干涉。通过调整超材料结构的图形、结构参数及介质层材料厚度等参数可以调节谐振峰的位置及相应的吸收率,实现对目标频点太赫兹辐射接近100%吸收率的完美吸波。在本实施例中,栅极10作为底层的连续金属薄膜反射层,衬底层11和绝缘层12作为中间的介质层,金属电极阵列作为顶层的金属层。石墨烯沟道层14紧贴在超材料结构的金属电极阵列上表面,入射的太赫兹辐射在石墨烯沟道层14发生较低吸收率的吸收后入射到超材料结构的金属电极阵列就可以实现接近100%吸收率的完美吸收,从而能够提高探测器对太赫兹辐射的吸收率。超材料结构吸收的太赫兹辐射将被传导至石墨烯沟道层14。

本发明实施例还提供一种制备前述实施例的基于石墨烯场效应晶体管的太赫兹探测器的制备方法,该制备方法包括以下步骤:

S1:提供衬底层,清洗衬底层并吹干后在衬底层的下表面沉积得到栅极。

栅极可以采用直流磁控溅射法沉积得到,在本实施例中,栅极为厚0.2μm的金属铝薄膜。

S2:在衬底层的上表面沉积得到绝缘层。

绝缘层可以采用等离子体增强化学气相沉积法(PECVD)沉积得到,在本实施例中,绝缘层为厚0.3μm的SiO2薄膜。

S3:在绝缘层上沉积得到金属前置层。

金属前置层为一层完整的金属。在本实施例中,金属前置层采用金属铝。

S4:采用光刻工艺对金属前置层进行刻蚀得到金属电极层,其中,金属电极层包括金属电极阵列以及位于金属图形阵列两侧的源极和漏极,金属电极阵列包括多个周期性间隔排列的金属电极。

在刻蚀之前,可以先对不需要刻蚀的金属前置层上旋涂光刻胶,然后再对金属前置层进行刻蚀,刻蚀结束后,去除光刻胶,剩余的金属就形成金属电极层。

当然,在其它一些实施例中,金属电极层的形成方式可以是先在绝缘层上旋涂光刻胶,然后在光刻胶上图形化出金属电极阵列、源极和漏极的图案,然后在图案上沉积金属铝,最后去除剩余的光刻胶。

S5:在金属电极层上转移得到石墨烯沟道层,其中,石墨烯沟道层全部覆盖金属电极阵列以及至少部分覆盖源极和漏极。

石墨烯沟道层的转移方式可以是:先采用化学气相沉积工艺在铜衬底表面生长一层石墨烯薄膜,再采用转移法将石墨烯薄膜转移到金属电极层上,并采用反应离子刻蚀法刻蚀掉边缘多余的石墨烯薄膜。

采用上述制备方法后,就可以得到前述实施例的基于石墨烯场效应晶体管的太赫兹探测器。采用本发明实施例的制备方法得到的石墨烯太赫兹探测器,可以大幅提高太赫兹辐射吸收率,参阅图3,由图中易知该石墨烯太赫兹探测器可以有效的提高对2.5THz附近太赫兹辐射的吸收率。

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他领域,均同理包括在本发明的专利保护范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号