首页> 美国卫生研究院文献>Scientific Reports >Highly Sensitive and Wide-Band Tunable Terahertz Response of Plasma Waves Based on Graphene Field Effect Transistors
【2h】

Highly Sensitive and Wide-Band Tunable Terahertz Response of Plasma Waves Based on Graphene Field Effect Transistors

机译:基于石墨烯场效应晶体管的等离子波的高灵敏度和宽带可调太赫兹响应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Terahertz (THz) technology is becoming a spotlight of scientific interest due to its promising myriad applications including imaging, spectroscopy, industry control and communication. However, one of the major bottlenecks for advancing this field is due to lack of well-developed solid-state sources and detectors operating at THz gap which serves to mark the boundary between electronics and photonics. Here, we demonstrate exceptionally wide tunable terahertz plasma-wave excitation can be realized in the channel of micrometer-level graphene field effect transistors (FET). Owing to the intrinsic high propagation velocity of plasma waves (>~108 cm/s) and Dirac band structure, the plasma-wave graphene-FETs yield promising prospects for fast sensing, THz detection, etc. The results indicate that the multiple guide-wave resonances in the graphene sheets can lead to the deep sub-wavelength confinement of terahertz wave and with Q-factor orders of magnitude higher than that of conventional 2DEG system at room temperature. Rooted in this understanding, the performance trade-off among signal attenuation, broadband operation, on-chip integrability can be avoided in future THz smart photonic network system by merging photonics and electronics. The unique properties presented can open up the exciting routes to compact solid state tunable THz detectors, filters, and wide band subwavelength imaging based on the graphene-FETs.
机译:太赫兹(THz)技术由于其在成像,光谱学,工业控制和通讯等众多应用领域中的应用前景而备受关注。然而,推进这一领域的主要瓶颈之一是由于缺乏成熟的固态光源和以太赫兹间隙工作的探测器,这些探测器用于标记电子和光子学之间的边界。在这里,我们演示了在微米级石墨烯场效应晶体管(FET)的通道中可以实现非常宽的可调太赫兹等离子体波激发。由于等离子体波固有的高传播速度(>〜10 8 cm / s)和狄拉克能带结构,等离子波石墨烯-FET在快速传感,太赫兹检测等方面具有广阔的前景。结果表明,石墨烯片中的多个波导共振可导致太赫兹波的深亚波长限制,并且在室温下其Q因子比常规2DEG系统高。从这种理解出发,在未来的THz智能光子网络系统中,通过合并光子学和电子学,可以避免信号衰减,宽带操作,片上可集成性之间的性能折衷。所呈现的独特性能可以为通往紧凑型固态可调THz检测器,滤波器和基于石墨烯FET的宽带亚波长成像开辟令人兴奋的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号