首页> 中国专利> 粘接组合物以及具有其的粘接膜、带粘接组合物的基板、半导体装置及其制造方法

粘接组合物以及具有其的粘接膜、带粘接组合物的基板、半导体装置及其制造方法

摘要

本发明提供一种形成了裂缝的状态下的强度优异的粘接组合物,所述粘接组合物的特征在于,含有(A)聚酰亚胺、(B)多官能环氧化合物、(C)环氧固化剂及(D)无机粒子,上述(A)聚酰亚胺在不挥发性有机成分中的比例为3.0重量%以上、30重量%以下,上述(C)环氧固化剂在不挥发性有机成分中的比例为0.5重量%以上、10重量%以下,并且,将不挥发性有机成分的总克数记为T、将不挥发性有机成分中的环氧基的摩尔数记为M,T/M为400以上、8000以下。

著录项

  • 公开/公告号CN105916956A

    专利类型发明专利

  • 公开/公告日2016-08-31

    原文格式PDF

  • 申请/专利权人 东丽株式会社;

    申请/专利号CN201580004584.2

  • 发明设计人 小田拓郎;金森大典;野中敏央;

    申请日2015-01-09

  • 分类号C09J179/08;C09J7/02;C09J11/04;C09J11/06;C09J163/00;H01L21/60;

  • 代理机构北京市金杜律师事务所;

  • 代理人杨宏军

  • 地址 日本东京都

  • 入库时间 2023-06-19 00:24:50

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-04-12

    授权

    授权

  • 2016-09-28

    实质审查的生效 IPC(主分类):C09J179/08 申请日:20150109

    实质审查的生效

  • 2016-08-31

    公开

    公开

说明书

技术领域

本发明涉及:可用于个人电脑、便携终端中使用的电子部件、放热板与印刷基板、柔性基板的粘接及基板等彼此之间的粘接的粘接组合物;可用于晶片保护的粘接组合物。更详细而言,本发明涉及:在将IC、LSI等半导体芯片粘接或直接电连接于柔性基板、玻璃环氧基板、玻璃基板、陶瓷基板、硅中介层等电路基板时使用的粘接组合物;用于半导体芯片彼此的接合、3维安装等半导体芯片的层叠的粘接组合物。另外,涉及具有本发明的粘接组合物的粘接膜、带粘接组合物的基板、半导体装置及其制造方法。

背景技术

伴随着近年来的电子终端设备的快速普及,电子设备不断小型·薄型化、高性能化。随之而来的是,其中搭载的半导体装置小型化、高密度化,作为将半导体芯片安装于电路基板的方法,倒装芯片安装在快速推广。

为了提高半导体装置的可靠性,在芯片与基板之间填充底部填充材料。作为填充底部填充材料的方法,利用毛细管现象在芯片与基板之间进行填充的方法是常规方法,但存在容易发生未填充、制造成本增高这样的问题。作为解决上述问题的方法,设计了将底部填充材料形成在晶片上、并将已形成单片的芯片接合(bonding)的方法。作为在晶片上形成的方法,包括利用真空热层合处理等将已涂布成膜状的树脂组合物形成在晶片上的方法、直接涂布树脂涂层剂而在晶片上形成的方法等。

对于如上述那样在晶片上形成树脂层的涂层剂而言,要求室温下的保存稳定性、短时间内的固化特性,对于固化物,要求强度高。作为上述材料,通常使用环氧组合物,环氧组合物虽然具有粘接性优异这样的优点,但存在强度低这样的问题。因此,作为改善上述问题的方法,报道了配合有聚酰亚胺的树脂组合物。(例如,专利文献1、专利文献2)。

专利文献1:日本特开2009-277818号公报

专利文献2:日本特开2007-211246号公报

发明内容

然而,专利文献1、专利文献2的树脂组合物在形成了裂缝(crack)的状态下的强度方面存在问题。鉴于上述情况,本发明的目的在于提供一种形成了裂缝的状态下的强度优异的粘接组合物。

即,本发明提供一种粘接组合物,其特征在于,含有(A)聚酰亚胺、(B)多官能环氧化合物、(C)环氧固化剂及(D)无机粒子,上述(A)聚酰亚胺在不挥发性有机成分中的比例为3.0重量%以上、30重量%以下,上述(C)环氧固化剂在不挥发性有机成分中的比例为0.5重量%以上、10重量%以下,并且,将不挥发性有机成分的总克数记为T、将不挥发性有机成分中的环氧基的摩尔数记为M,T/M为400以上、8000以下。

通过本发明,可得到形成了裂缝的状态下的强度优异的粘接组合物。

具体实施方式

本发明的粘接组合物的特征在于,含有(A)聚酰亚胺、(B)多官能环氧化合物、(C)环氧固化剂及(D)无机粒子,上述(A)聚酰亚胺在不挥发性有机成分中的比例为3.0重量%以上、30重量%以下,上述(C)环氧固化剂在不挥发性有机成分中的比例为0.5重量%以上、10重量%以下,并且,将不挥发性有机成分的总克数记 为T、将不挥发性有机成分中的环氧基的摩尔数记为M,T/M为400以上、8000以下。此处所谓不挥发性有机成分,是指于200℃进行1小时热重量测定时,未减少5%以上的重量的有机化学物质。

本发明的粘接组合物含有(A)聚酰亚胺。(A)聚酰亚胺由于含有酰亚胺环,因而耐热性及耐化学品性优异。尤其是,通过使用在聚酰亚胺的侧链上具有至少一个可与环氧基反应的官能团的聚酰亚胺,从而在热处理时促进(B)多官能环氧化合物的开环、向(A)聚酰亚胺加成的加成反应,可得到具有更高密度的网络结构的组合物。作为可与环氧基反应的官能团,可举出酚式羟基、磺酸基、巯基。作为这样的(A)聚酰亚胺的合成方法,不限于以下的例子,例如,可举出以下方法:首先,使具有可与环氧基反应的基团的酸二酐与二胺反应,合成聚酰亚胺前体,接下来,使用伯单胺作为封端剂,进行该聚酰亚胺前体的末端修饰,然后进行150℃以上的热处理,进行聚酰亚胺闭环。除此之外,还可举出以下方法:首先,使酸二酐与作为封端剂的伯单胺反应,然后添加二胺从而合成经末端修饰的聚酰亚胺前体,进而在150℃以上的高温下进行聚酰亚胺闭环。

本发明中使用的(A)聚酰亚胺的优选的一例具有通式(2)或通式(3)表示的结构,并且,以相对于聚合物总量为5~15重量%的量具有通式(1)表示的结构作为通式(2)或通式(3)中的R4。通过使通式(1)表示的结构为5重量%以上,可向刚直的聚酰亚胺赋予更适度的柔软性,通过使通式(1)表示的结构为15重量%以下,可维持聚酰亚胺骨架的刚直性,进一步确保耐热性、绝缘性。

需要说明的是,此处所谓通过聚酰亚胺的合成而得到的聚合物(聚酰亚胺)的总量,是指通过包含二胺和酸二酐及封端剂的构成成分的聚合而得到的重量,聚酰亚胺的重量中不包含在合成时过量加入的二胺、酸二酐及封端剂。

式(1)中,R1为2价的烃基。R1优选为碳原子数1~5的亚烷基或亚苯基。R2为1价的烃基。R2优选为碳原子数1~5的烷基或苯基。可在1分子聚酰亚胺内包含不同结构的R1及R2,也可在不同的聚酰亚胺分子间包含不同结构的R1及R2

n表示1~10的整数,优选为1~2。通过使n为1以上,可抑制固化时的粘接组合物的收缩,通过使n为10以下,可在不降低聚酰亚胺骨架中的酰亚胺基含有率的情况下提高粘接组合物的绝缘性、耐热性。

式(2)和式(3)中,R3为4~14价的有机基团,R4为2~12价的有机基团,R3、R4中的至少之一含有至少一个选自1,1,1,3,3,3-六氟丙基、异丙基、醚基、硫醚基及SO2基中的基团(以下,将其称为“特定基团”)。另外,R3、R4优选含有芳香族基团。R5及R6表示具有至少一个选自酚式羟基、磺酸基及巯基中的基团的有机基团。可在1分子聚酰亚胺内包含不同结构的R3~R6,也可在不同的聚酰亚胺分子间包含不同结构的R3~R6。X表示1价的有机基团。m为8~200。α及p分别表示0~10的整数,α+p为0~10的整数。其中,重复数m中的20~90%为α+β=1~10。

需要说明的是,从涂布性的观点考虑,本发明中使用的(A)聚酰亚胺优选为在有机溶剂中溶解的有机溶剂可溶性聚酰亚胺。在有机溶剂中溶解的有机溶剂可溶性聚酰亚胺的可溶性是指,于23℃在 选自下述溶剂中的至少1种溶剂中溶解20重量%以上。所述溶剂为:作为酮系溶剂的丙酮、甲基乙基酮、甲基异丁基酮、环戊酮、环己酮,作为醚系溶剂的1,4-二氧杂环己烷、四氢呋喃、二甘醇二甲醚,作为二醇醚系溶剂的甲基溶纤剂、乙基溶纤剂、丙二醇单甲基醚、丙二醇单乙基醚、丙二醇单丁基醚、二乙二醇甲基乙基醚,以及苯甲醇、N-甲基吡咯烷酮、γ-丁内酯、乙酸乙酯、N,N-二甲基甲酰胺。

通式(2)、(3)中,R3表示酸二酐的结构成分,其中,优选为碳原子数5~40的4~14价的有机基团。另外,R4表示二胺的结构成分,其中,优选为碳原子数5~40的2~12价的有机基团。另外,优选R3、R4这两方含有至少一个特定基团。

R5为酸二酐的取代基,优选为选自酚式羟基、磺酸基及巯基中的基团。R6为二胺的取代基,优选为选自酚式羟基、磺酸基及巯基中的基团。

对使用的酸二酐进行说明。作为具有至少一个特定基团的酸二酐,具体而言,可举出2,2-双(3,4-二羧基苯基)丙烷二酐、2,2-双(2,3-二羧基苯基)丙烷二酐、双(3,4-二羧基苯基)砜二酐、双(3,4-二羧基苯基)醚二酐、2,2-双(3,4-二羧基苯基)六氟丙烷二酐或者用烷基、卤素原子取代它们的芳香族环而得到的化合物等。

作为具有至少一个特定基团、并且具有至少一个选自酚式羟基、磺酸基及巯基中的基团的酸二酐,具体而言,可举出下述所示结构的芳香族酸二酐。

R9表示C(CF3)2、C(CH3)2、SO2、S或O。R10及R11表示氢原子、羟基、巯基或磺酸基。其中,R10及R11不同时为氢原子。

作为不具有特定基团、具有至少一个选自酚式羟基、磺酸基及巯基中的基团的酸二酐,具体而言,可举出下述所示结构的芳香族酸二酐。

R7、R8表示氢原子、羟基、巯基或磺酸基。其中,R7及R8不同时为氢原子。

作为不具有特定基团、也不具有酚式羟基、磺酸基、巯基的酸二酐,具体而言,可举出均苯四酸二酐、3,3,4,4’-联苯四甲酸二酐、2,3,3,4’-联苯四甲酸二酐、2,2,3,3’-联苯四甲酸二酐、3,3,4,4’-二苯甲酮四甲酸二酐、2,2,3,3’-二苯甲酮四甲酸二酐、1,1-双(3,4-二羧基苯基)乙烷二酐、1,1-双(2,3-二羧基苯基)乙烷二酐、双(3,4-二羧基苯基)甲烷二酐、双(2,3-二羧基苯基)甲烷二酐、1,2,5,6-萘四甲酸二酐、2,3,6,7-萘四甲酸二酐、2,3,5,6-吡啶四甲酸二酐、3,4,9,10-苝四甲酸二酐等芳香族四羧酸二酐或用烷基、卤素原子取代它们的芳香族环而得到的化合物。

本发明中,可单独或组合2种以上使用上述酸二酐。

对使用的二胺进行说明。作为具有至少一个特定基团的二胺,具体而言,可举出3,4’-二氨基二苯基硫醚、4,4’-二氨基二苯基硫醚、3,4’-二氨基二苯基醚、4,4’-二氨基二苯基醚、3,4’-二氨基二苯基砜、4,4’-二氨基二苯基砜、双(4-氨基苯氧基苯基)砜、双(3-氨基苯氧基苯基)砜、双(4一氨基苯氧基)联苯、双[4-(4-氨基苯氧基)苯基]醚、1,4-双(4-氨基苯氧基)苯、1,3-双(4-氨基苯氧基)苯、2,2-双[4-(4-氨基苯氧基)苯基]六氟丙烷、2,2-双[4-(4-氨基苯氧基)苯基]丙烷、或者用烷基、卤素原子取代它们的芳香族环而得到的化合物等。

作为具有至少一个特定基团、并且具有至少一个选自酚式羟基、 磺酸基及巯基中的基团的二胺,具体而言,可举出2,2-双(3-氨基-4-羟基苯基)六氟丙烷、2,2-双(3-羟基-4-氨基苯基)六氟丙烷、2,2-双(3-氨基-4-羟基苯基)丙烷、2,2-双(3-羟基-4-氨基苯基)丙烷、3,3’-二氨基-4,4’-二羟基二苯基醚、3,3’-二氨基-4,4’-二羟基二苯基砜、3,3’-二氨基-4,4’-二羟基二苯基硫醚或者用烷基、卤素原子取代它们的芳香族环而得到的化合物等、或者下述所示结构的二胺等。

R16表示C(CF3)2、C(CH3)2、SO2、S或O。R17~R18表示氢原子、羟基、巯基或磺酸基。其中,R17及R18不同时为氢原子。

作为不具有特定基团、具有至少一个选自酚式羟基、磺酸基及巯基中的基团的二胺,具体而言,可举出3,3’-二氨基-4,4’-二羟基联苯、2,4-二氨基苯酚、2,5-二氨基苯酚、1,4-二氨基-2,5-二羟基苯、二氨基二羟基嘧啶、二氨基二羟基吡啶、羟基二氨基嘧啶、9,9-双(3-氨基-4-羟基苯基)芴、或者用烷基、卤素原子取代它们的芳香族环而得到的化合物等、或者下述所示结构的二胺等。

R12~R15表示氢原子、羟基、巯基或磺酸基。其中,R12及R13不同时为氢原子。

作为不具有特定基团、也不具有酚式羟基、磺酸基、巯基的二胺,具体而言,可举出3,4’-二氨基二苯基甲烷、4,4’-二氨基二苯 基甲烷、联苯胺、间苯二胺、对苯二胺、1,5-萘二胺、2,6-萘二胺、2,2’-二甲基-4,4’一二氨基联苯、2,2’-二乙基-4,4’-二氨基联苯、3,3’-二甲基-4,4’-二氨基联苯、3,3’-二乙基-4,4’-二氨基联苯、2,2,3,3’-四甲基-4,4’-二氨基联苯、3,3,4,4’-四甲基-4,4’-二氨基联苯、2,2’-二(三氟甲基)-4,4’-二氨基联苯、或者用烷基、卤素原子取代它们的芳香族环而得到的化合物、对苯二甲酰肼、间苯二甲酰肼、邻苯二甲酰肼、2,6-萘二甲酸二酰肼、4,4’-联苯碳二酰肼(4,4′-bisphenyl dicarbonohydrazine)、4,4’-环己烷碳二酰肼(4,4′-cyclohexane dicarbonohydrazine)、或者用烷基、卤素原子取代它们的芳香族环而得到的酰肼化合物等。可单独或组合2种以上使用本发明中使用的二胺。

另外,由于包含通式(1)表示的结构作为通式(2)、(3)中的R4,所以通式(1)表示的结构成为二胺的构成成分。作为包含通式(1)表示的结构的二胺,可举出双(3-氨基丙基)四甲基二硅氧烷、双(对氨基苯基)八甲基五硅氧烷等。

通过选择通式(2)、(3)中的R5、R6,可调节热处理时的聚酰亚胺与环氧化合物的反应率,调节粘接组合物的交联密度。由此,可向粘接组合物赋予必要的耐热性、耐化学品性。α、β分别表示0~10的整数,α+β表示0~10的整数。其中,重复数m中的20~90%表示α+β=1~10。另外,优选R5及R6的总计的20~90%为酚式羟基、磺酸基或巯基。通过使上述基团为R5及R6的总计的20%以上,可提高耐化学品性、耐热性,通过使其为90%以下,可将交联密度抑制在适度的范围内,可保持膜的伸长率、韧性。

作为通式(2)、(3)的结构成分的X是来源于作为封端剂的伯单胺的成分。它们可以是单独的,或可以是与其他封端基团的2种以上的组合。所谓伯单胺,具体而言,可举出5-氨基喹啉、4-氨基喹啉、3-氨基萘、2-氨基萘、1-氨基萘、苯胺等。这些中,优选使用苯胺。

另外,优选使用不具有其他与环氧化合物反应的取代基的伯单 胺。由此,可得到在分子运动性高的聚酰亚胺的末端部不具有与环氧化合物反应的取代基的聚酰亚胺。通过使用上述聚酰亚胺,从而使得室温下聚酰亚胺与环氧化合物的反应难以进行,可进一步提高粘接组合物的保存性。

对于通式(2)、(3)的X成分的导入比例而言,若以作为其原成分的封端剂伯单胺成分换算,则相对于全部二胺成分,优选为0.1~60摩尔%的范围,特别优选为5~50摩尔%。

通式(2)、(3)的m表示聚合物的重复数,表示8~200的范围。优选为10~150。利用凝胶过滤色谱法测得的、聚苯乙烯换算的重均分子量优选为4000~80000,特别优选为8000~60000。通过使m为8以上,从而增大粘度,能进行厚膜涂布,通过使m为200以下,可提高在溶剂中的溶解性。此处,(A)聚酰亚胺的重均分子量可利用下述方法求出。使用将聚酰亚胺溶解于N-甲基吡咯烷酮(NMP)而得到的固态成分浓度为0.1重量%的聚酰亚胺溶液,利用GPC装置Waters2690(Waters株式会社制),算出聚苯乙烯换算的重均分子量。GPC测定条件为:流动相为分别以0.05mol/L的浓度溶解有LiCl和磷酸的NMP,展开速度为0.4ml/分钟。

作为使用的GPC装置,例如,可举出:

检测器:Waters996

系统控制器:Waters2690

柱箱:Waters HTR-B

温度控制器:Waters TCM

柱:TOSOH(TSK-GEL Guard Column)

柱:TOSOH TSK-GELα-4000

柱:TOSOH TSK-GELα-2500等。

本发明中使用的(A)聚酰亚胺可以是仅包含通式(2)、(3)表示的结构的聚酰亚胺,也可以是在通式(2)、(3)表示的结构中还具有其他结构作为共聚成分的共聚物,另外也可以是它们的混合物。进而,也可在它们中的任一种中混合其他结构表示的聚酰亚 胺。此时,优选含有50摩尔%以上通式(2)、(3)表示的结构。共聚或混合中使用的结构的种类及量优选在不损害通过加热处理而得到的耐热性树脂皮膜的耐热性的范围内选择。

另外,被导入至聚合物中的通式(1)的结构及本发明中使用的封端剂可利用以下方法容易地进行检测、定量。例如,将已导入了通式(1)的结构及封端剂的聚合物溶解于酸性溶液或碱性溶液中,将其分解成作为聚合物的结构单元的二胺成分和酸酐成分,对这些成分进行气相色谱(GC)、NMR测定,由此可容易地对通式(1)的结构及使用的封端剂进行检测、定量。另外,通过直接对已导入了封端剂的聚酰亚胺进行热解气相色谱(PGC)、红外光谱及13CNMR波谱测定,从而也可容易地对通式(1)的结构及使用的封端剂进行检测、定量。

对于(A)聚酰亚胺的含量而言,从向带凸起(bump)的基板的涂布性、在凸起间的填充性的观点考虑,(A)聚酰亚胺在不挥发性有机成分中所占的比例为30重量%以下。(A)聚酰亚胺在不挥发性有机成分中所占的比例高于30重量%时,难以控制树脂涂层剂的粘度。此处所谓树脂涂层剂,是指为了利用旋涂法等涂布法在晶片、基板、支承膜等上形成皮膜、而利用有机溶剂调节了粘度的涂布液。另外,从粘接强度的观点考虑,(A)聚酰亚胺在不挥发性有机成分中所占的比例为3.0重量%以上。另外,为了与环氧化合物反应而形成密度高的网络结构,(A)聚酰亚胺在不挥发性有机成分中所占的比例更优选为5.0重量%以上、30重量%以下。

本发明的粘接组合物还含有(B)多官能环氧化合物。此处所谓多官能环氧化合物,是指在1分子中含有2个以上缩水甘油基或环氧基环己基的化合物。(A)聚酰亚胺在侧链上具有酚式羟基、磺酸基、巯基时,(B)多官能环氧化合物与它们反应,构成具有密度更高的网络结构的固化物,因此,得到的固化后的粘接组合物相对于各种化学品呈现出更强的耐性。另外,环氧化合物通常通过不伴有收缩的开环反应而进行固化,因此,可降低粘接组合物在固化时的 收缩。作为(B)多官能环氧化合物,优选环氧当量为100以上。通过使环氧当量为100以上,可提高固化后的粘接组合物的强度。

作为(B)多官能环氧化合物,只要为2官能以上即可,没有特别限制,例如,可使用双酚A型环氧树脂、双酚F型环氧树脂、双酚S型环氧树脂、苯酚线型酚醛树脂型环氧树脂(phenol novolac epoxy resin)、甲酚线型酚醛树脂型环氧树脂(cresol novolac epoxyresin)、联苯型环氧树脂、氢醌型环氧树脂、含有二苯基硫醚骨架的环氧树脂、酚芳烷基型多官能环氧树脂、含有萘骨架的多官能环氧树脂、含有二环戊二烯骨架的多官能环氧树脂、含有三苯基甲烷骨架的多官能环氧树脂、氨基酚型环氧树脂、二氨基二苯基甲烷型环氧树脂、其他各种多官能环氧树脂。

例如,可举出jER828、jER152、jER1001、jER1002、jER1004AF、jER1007、jER1009、jER1010、jER1256、YX4000H、jER4004P、jER5050、jER154、jER157S70、jER180S70、YX4000H、YL980(以上为商品名,三菱化学株式会社制)、TEPIC S、TEPIC G、TEPIC P(以上为商品名,日产化学工业株式会社制)、EPOTOTE YH-434L(商品名,新日铁化学株式会社制)、EPPN502H、NC3000、NC3000H(以上为商品名,日本化药株式会社制)、EPICLON N695、EPICLON HP-7200、EPICLON HP-4032(以上为商品名,DIC株式会社制)等,但不限于这些。可将2种以上的上述化合物进行组合。

这些化合物中,从低吸水率、高耐热性、强韧性的观点考虑,优选使用双酚A型环氧树脂。关于通过双酚A与表氯醇的反应而得到的双酚A型环氧树脂,可举出具有1个双酚A骨架的jER828、YL980、具有多个双酚A骨架的jER1010、jER1256等(以上为商品名,三菱化学株式会社制)。

从涂布时的制膜性的观点考虑,(B)多官能环氧化合物中,环氧当量(g/eq,以下有时省略。)优选为1000以上,更优选为2000以上。另外,从在丙二醇单甲基醚乙酸酯等有机溶剂中的溶解性的观点考虑,环氧当量优选为7000以下,更优选为5000以下,进一 步优选为4000以下。作为这样的环氧当量为1000以上、7000以下的双酚A型环氧树脂,可举出jER1007、jER1009、jER1010(以上为商品名,三菱化学株式会社制)等。另外,从制膜性的观点考虑,环氧当量为1000以上、7000以下的环氧树脂在不挥发性有机成分中所占的比例优选为20重量%以上、70重量%以下,更优选为20重量%以上、60重量%以下。

另外,从粘接组合物的流动性及在铜柱凸起(copper pillar bumps)、焊料凸起(solder bumps)等突起物之间的填充性的观点考虑,优选配合液态环氧化合物。液态环氧化合物是指,在25℃、1个大气压下显示150Pa·s以下的粘度的环氧化合物。具体而言,可举出EPOTOTE PG-207GS(新日铁化学株式会社制)、YL980、jER828、jER806、jER807、YL983U(以上为商品名,三菱化学株式会社制)等。

另外,对于液态环氧化合物在不挥发性有机成分中所占的比例而言,从粘接组合物的流动性及在铜柱凸起、焊料凸起等突起物之间的填充性的观点考虑,优选为5重量%以上、60重量%以下,更优选为10重量%以上、50重量%以下。

本发明的粘接组合物含有(C)环氧固化剂。作为环氧固化剂,优选在含有有机溶剂的树脂涂层剂的状态下粘度不会大幅上升,从反应性、保存稳定性的观点考虑,优选咪唑系固化剂。作为咪唑系固化剂,可举出咪唑、2-甲基咪唑、2-十一烷基咪唑、1,2-二甲基咪唑、2-乙基-4-甲基咪唑、2一苯基咪唑、2-苯基-4-甲基咪唑、2E4MZ、2PZ、C11Z、2P4MZ(以上为商品名,四国化成工业株式会社制)等。

从反应性的观点考虑,咪唑系固化剂的固化速度时间优选为20天以下,更优选为5天以下,进一步优选为2天以下。另外,从保存稳定性的观点考虑,咪唑系固化剂的固化速度时间优选为0.2天以上,更优选为0.5天以上。作为固化速度时间为0.5天以上、2天以下的咪唑系固化剂,具体而言,可举出2PZ、2PZ-OK(以上为商 品名,四国化成工业株式会社制)等。此处所谓固化速度时间,是指:准备相对于100重量份的双酚A型液态环氧树脂而添加了5重量份的咪唑系固化剂而得到的试样100mL,于25℃在密闭状态下进行保存时,直到试样的粘度成为初始粘度的2倍为止的天数。

(C)环氧固化剂在不挥发性有机成分中的比例为0.5重量%以上、10重量%以下。通过使环氧固化剂的含量为10重量%以下,可在室温下长期保存由粘接组合物形成的树脂涂层剂,可充分进行粘接组合物的固化。另外,(C)环氧固化剂在不挥发性有机成分中的比例高于10重量%时,虽然可进行粘接组合物的固化,但室温下的可使用时间缩短。另外,(C)环氧固化剂在不挥发性有机成分中的比例优选为5重量%以下,更优选为3重量%以下。另外,(C)环氧固化剂在不挥发性有机成分中的比例为0.5重量%以上,优选为1.0重量%以上。通过使(C)环氧固化剂的比例为0.5重量%以上,可制作连接可靠性更优异的半导体装置。

本发明的粘接组合物含有(D)无机粒子。在使粘接组合物加热固化时,无机粒子可将粘接组合物的熔融粘度调节至不发泡的程度。作为(D)无机粒子的材质,可单独或混合2种以上使用二氧化硅、氧化铝、二氧化钛、氮化硅、氮化硼、氮化铝、氧化铁、玻璃、其他金属氧化物、金属氮化物、金属碳酸盐、硫酸钡等金属硫酸盐等。这些中,从低热膨胀性、散热性、低吸湿率、在粘接组合物中的分散稳定性方面考虑,优选使用二氧化硅。

(D)无机粒子的形状可以为球状、破碎状、小片状等非球状中的任意,但球状的无机粒子容易在粘接组合物中均匀分散,因而优选使用。另外,对于球状的无机粒子的平均粒径而言,从在铜柱凸起、焊料凸起等突起物之间的填充性的观点考虑,优选为3μm以下,更优选为1.0μm以下,进一步优选为700nm以下。另外,该平均粒径优选为10nm以上,为10nm以上时,分散性更优异,能将无机粒子高浓度地填充至粘接组合物中。另外,从制备的树脂涂层剂的涂布性的观点考虑,该平均粒径优选为100nm以上,更优选为300nm 以上。

另外,在粘接组合物需要透明性的情况下,无机粒子的粒径优选为100nm以下,更优选为60nm以下。例如,在将粘接组合物的膜形成在基板上后,出于对准(alignment)等目的,需要透过粘接组合物目视确认存在于基板面的标记等情况。

另外,在调配树脂涂层剂时,可以以分散于有机溶剂中的浆料状态添加(D)无机粒子,也可添加无溶剂的粉体。另外,还可添加浆料状态的无机粒子和粉体的无机粒子这两方。从无机粒子的分散性的观点考虑,优选使用浆料状态的无机粒子。

需要说明的是,所谓无机粒子的平均粒径,表示无机粒子单独存在时的粒径,表示出现频率最高的粒径。形状为球状的情况下,表示其直径,为椭圆状及扁平状的情况下,表示形状的最大长度。此外,在棒状或纤维状的情况下,表示长度方向的最大长度。作为测定粘接组合物中的无机粒子的平均粒径的方法,可利用以下方法进行测定:利用SEM(扫描型电子显微镜)直接观察粒子,计算100个粒子的粒径的平均值。

另外,从(D)无机粒子的分散性、该无机粒子与周围的树脂的粘接性的观点考虑,优选对该无机粒子进行表面处理。作为表面处理剂,可使用常规的硅烷偶联剂,从分散性、粘接性的观点考虑,优选含有环氧基的硅烷偶联剂、含有氨基的硅烷偶联剂。

相对于不挥发性成分的总量,(D)无机粒子的含量优选为50重量%以上、80重量%以下,更优选为60重量%以上、75重量%以下,进一步优选为60重量%以上、70重量%以下。(D)无机粒子的该含量为50重量%以上时,可在使用该粘接组合物时制造连接可靠性更优异的半导体装置。另外,(D)无机粒子的含量为80重量%以下时,无机粒子的分散性变得更良好。此处所谓不挥发性成分,是指将不挥发性有机成分和不挥发性无机成分加起来的成分。

出于固化后的膜的低应力化的目的,本发明的粘接组合物可在不损害本发明的效果的范围内含有热塑性树脂。作为热塑性树脂, 例如,可举出苯氧基树脂、聚酯、聚氨酯、聚酰胺、聚丙烯、丙烯腈-丁二烯共聚物(NBR)、苯乙烯-丁二烯共聚物、(SBR)、丙烯腈-丁二烯-甲基丙烯酸共聚物、丙烯腈-丁二烯-丙烯酸共聚物等,但不限于这些。

出于提高与基板的亲和性的目的,本发明的粘接组合物、由该粘接组合物形成的树脂涂层剂可在不损害本发明的效果的范围内包含表面活性剂。作为这样的表面活性剂,没有特别限制,例如,可举出氟系表面活性剂、聚硅氧烷系表面活性剂、非离子系表面活性剂等。其中,优选与基板的亲和性改善效果好的氟系表面活性剂。

作为氟系表面活性剂的具体例,可举出(以下为商品名)Megafac F171、F173、R-30(DIC株式会社(前Dainippon Ink and Chemicals,Inc.)制)、Fluorad FC430、FC431(Sumitomo 3M Ltd.制)、Asahi Glass Co.,Ltd.AG710、Surflon S-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子株式会社制)等,但不限于这些。另外,作为聚硅氧烷系表面活性剂的具体例(以下为商品名),可举出BYK-378、BYK-337、BYK-306、BYK-333、BYK-375、BYK-370、BYK-377、BYK-323、BYK-325(BYK-Chemie Japan株式会社制)等,但不限于这些。另外,表面活性剂也可组合多种使用。

出于提高与基板的密合性的目的,本发明的粘接组合物及由该粘接组合物形成的树脂涂层剂可在不损害本发明的效果的范围内包含密合促进剂。此时,也可组合多种密合促进剂使用。

作为这样的密合促进剂,例如,可举出三甲基氯硅烷、乙烯基三氯硅烷、二甲基乙烯基氯硅烷、甲基二苯基氯硅烷、氯甲基二甲基氯硅烷等氯硅烷类;γ-氯丙基三甲氧基硅烷、γ-氨基丙基三乙氧基硅烷、γ-甲基丙烯酰基氧基丙基三甲氧基硅烷、γ-环氧丙氧基丙基三甲氧基硅烷、γ-(N-哌啶基)丙基三甲氧基硅烷、三甲基甲氧基硅烷、二甲基二甲氧基硅烷、二甲基二乙氧基硅烷、二甲基乙烯基乙氧基硅烷、二苯基二甲氧基硅烷、苯基三乙氧基硅烷等烷氧基硅烷类;六甲基二硅氮烷、八甲基环四硅氮烷等硅氮烷类; (N,N-二甲基)三甲基甲硅烷基胺、三甲基甲硅烷基咪唑等硅烷类;苯并三唑、苯并咪唑、吲唑、咪唑、2-巯基苯并咪唑、2-巯基苯并噻唑、2-巯基苯并噁唑、尿唑、硫脲嘧啶、巯基咪唑、巯基嘧啶等杂环状化合物;N,N’-双(三甲基甲硅烷基)脲、1,1-二甲基脲、1,3-二甲基脲等脲、或硫脲化合物等。

本发明的粘接组合物、由该粘接组合物形成的树脂涂层剂可包含助熔剂(flux agent)。作为助熔剂,可使用具有羧酸基等的有机酸化合物等。

为了从本发明的粘接组合物制备树脂涂层剂,可通过以下方式制备:将(A)聚酰亚胺、(B)多官能环氧化合物、(C)环氧固化剂、(D)无机粒子混合,进行搅拌,将(A)聚酰亚胺、(B)多官能环氧化合物、(C)环氧固化剂溶解于有机溶剂,使(D)无机粒子分散。作为此处使用的有机溶剂,只要是将(A)聚酰亚胺、(B)多官能环氧化合物、(C)环氧固化剂溶解的有机溶剂即可。

作为有机溶剂,具体而言,可举出乙二醇单甲基醚、乙二醇单乙基醚、丙二醇单甲基醚、丙二醇单乙基醚、乙二醇二甲基醚、乙二醇二乙基醚、乙二醇二丁基醚、二乙二醇单乙基醚等醚类、乙二醇单乙基醚乙酸酯、丙二醇单甲基醚乙酸酯、乙酸丙酯、乙酸丁酯、乙酸异丁酯、乙酸3-甲氧基丁酯、乙酸3-甲基-3-甲氧基丁酯、乳酸甲酯、乳酸乙酯、乳酸丁酯等乙酸酯类、丙酮、甲基乙基酮、乙酰丙酮、甲基丙基酮、甲基丁基酮、甲基异丁基酮、环戊酮、2-庚酮等酮类、丁醇、异丁醇、戊醇、4-甲基-2-戊醇、3-甲基-2-丁醇、3-甲基-3-甲氧基丁醇、二丙酮醇等醇类、甲苯、二甲苯等芳香族烃类、以及N-甲基-2-吡咯烷酮、N-环己基-2-吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、γ-丁内酯等。这些中,特别优选将(A)成分溶解并且在大气压下沸点为100℃~180℃的溶剂。若沸点为上述范围,则在涂布树脂涂层剂时不会发生溶剂过度挥发而无法进行涂布的情况,并且可以不提高树脂涂层剂的干燥热处理温度,因此,不限制基板、支承膜的材 质。另外,通过使用将(A)成分溶解的溶剂,可在基板、支承膜上形成均匀性良好的涂膜。此处,本发明中所谓的沸点,是指1个大气压、即1.013×105N/m2的压力下的沸点。沸点的测定可利用已知的技术进行,没有特别限制,例如,可通过使用Swietoslawski的沸点计进行测定。

作为具有这样的沸点的特别优选的有机溶剂,具体而言,可举出环戊酮、乙二醇单甲基醚、乙二醇单乙基醚、丙二醇单甲基醚、丙二醇单甲基醚乙酸酯、乳酸甲酯、乳酸乙酯、二丙酮醇及3-甲基-3-甲氧基丁醇等。

另外,可使用滤纸、滤器将如上所述进行混合、溶解及分散而得到的树脂涂层剂过滤。过滤方法没有特别限制,为了使分散的(D)无机粒子通过,优选使用保留粒径为10μm以上的滤器、利用加压过滤进行过滤的方法。

本发明的不挥发性有机成分是指,在粘接组合物、树脂涂层剂中包含的成分中,于200℃进行1小时热重量测定时,不会减少5%以上的重量的有机化学物质。另外,本发明的粘接组合物的特征在于,将不挥发性有机成分的总克数记为T(单位为g),将不挥发性有机成分中的环氧基的摩尔数记为M(单位为mol),T/M为400以上、8000以下。

通过使T/M为400以上,从而成为即使在产生了裂缝的状态下也不易折断的材料。T/M低于400时,在产生了裂缝的状态下的强度减弱。另外,从强度的观点考虑,T/M优选为450以上,更优选为500以上。另外,从粘接性的观点考虑,T/M为8000以下。另外,从可靠性的观点考虑,T/M优选为4000以下,更优选为2000以下,进一步优选为1000以下。

接下来,对使用由本发明的粘接组合物形成的树脂涂层剂制作粘接膜的方法进行说明。本发明的粘接膜的特征在于,具有由本发明的粘接组合物形成的层及支承膜。本发明的粘接膜可如下得到,即,将上述树脂涂层剂涂布至支承膜上、接下来根据需要进行干燥。

本发明的粘接膜具有由本发明的粘接组合物形成的层及支承膜。此时使用的支承膜没有特别限制,可使用聚对苯二甲酸乙二醇酯(PET)膜、聚苯硫醚膜、聚酰亚胺膜等通常市售的各种膜。例如,可举出作为聚对苯二甲酸乙二醇酯膜的Cerapeel HP2(U)(TORAY ADVANCED FILM Co.,Ltd.制)等。

为了提高密合性和剥离性,可对由本发明的粘接组合物形成的层与支承膜的接合面实施有机硅(silicone)、硅烷偶联剂、铝螯合剂等表面处理。另外,支承膜的厚度没有特别限制,从作业性的观点,优选为10~75μm的范围。

另外,对于本发明的粘接膜而言,为了保护粘接膜的由粘接组合物形成的层,可在膜上具有保护膜。由此,可保护粘接膜的由粘接组合物形成的层的表面免遭大气中的碎屑、灰尘等污染物质侵袭。

作为保护膜,可举出聚乙烯膜、聚丙烯(PP)膜、聚酯膜等。例如,可举出作为聚对苯二甲酸乙二醇酯膜的SR3(OHTSUKI INDUSTRIAL Co.,Ltd.制)等。优选保护膜与粘接膜的由粘接组合物形成的层的粘接力小。

作为将由本发明的粘接组合物形成的树脂涂层剂涂布于支承膜的方法,可举出喷雾涂布、辊涂、丝网印刷、刮刀涂布、模涂、压延涂布、弯月面涂布(meniscus coater)、棒涂、辊涂、逗号辊式涂布(comma roll coater)、凹版涂布、网版涂布(screen coater)、缝模涂布等方法。另外,涂布膜厚因涂布方法、组合物的固态成分浓度、粘度等而异,通常,干燥后的膜厚优选为0.5μm以上、100μm以下。

可使用烘箱、加热板、红外线等进行干燥。干燥温度及干燥时间为能使有机溶剂挥发的范围即可,优选适当地设定为粘接膜的由粘接组合物形成的层成为未固化或半固化状态的范围。具体而言,优选在40℃~120℃的范围进行1分钟~数十分钟。另外,也可将上述温度组合而阶段性地升温,例如,可于50℃、60℃、70℃各进行1分钟热处理。

接下来,对本发明的粘接组合物的固化后的物性进行说明。从可靠性的观点考虑,固化后的该粘接组合物在-40℃时的弹性模量优选为10GPa以上、15GPa以下,更优选为11GPa以上、14GPa以下,进一步优选为11GPa以上、13GPa以下。此处所谓-40℃时的弹性模量,是指在频率为1Hz、升温速度为5℃/分钟、测定应变为0.02%的条件下对5mm×50mm×0.5mm尺寸的试验片进行动态粘弹性测定时的、-40℃时的弹性模量。

另外,本发明的粘接组合物的固化物的最大强度优选为28N以上。通过使最大强度为28N以上,从而即使在半导体内部产生裂缝,也可阻止半导体的破坏,提高可靠性。通过使T/M为400以上,可达成最大强度为28N以上。此处所谓的最大强度,是指于23℃以试验速度为166.6μm/秒、支点高度为200μm的条件使用下述试验片从试验片的槽的相反部分进行三点弯曲试验时,试验片折断时的强度。所述试验片是在4mm×20mm×2mm尺寸的长方体的2mm×20mm的面上,在沿长度方向距宽2mm的两边10mm的位置即中央的位置,沿与宽2mm的两边平行的方向形成深1.84mm、宽300μm的槽,在槽部分处制作裂缝而得到的试验片。

本发明的带粘接组合物的基板的特征在于,具有由本发明的粘接组合物形成的层及基板。作为将本发明的粘接组合物形成在基板上的方法,可利用使用旋涂器(spinner)的旋涂、丝网印刷、刮刀涂布、模涂、压延涂布、弯月面涂布(meniscus coater)、棒涂、辊涂、逗号辊式涂布(comma roll coater)、凹版涂布、网版涂布(screen coater)、缝模涂布等方法涂布树脂涂层剂,也可利用基于热压处理、热层合处理、热真空层合处理等的热压接形成将树脂涂层剂涂布在支承膜上而制作的粘接膜。

本发明的半导体装置具有由本发明的粘接组合物形成的层。本发明的粘接组合物、树脂涂层剂、粘接膜可作为用于将半导体元件、电路基板、金属布线材料粘接、固定或密封、或将晶片增强的半导体用粘接剂、半导体用涂层剂而合适地使用。另外,本发明中所谓 半导体装置,是指通过利用半导体元件的特性而能发挥功能的全部装置,电光学装置、半导体电路及电子设备均被包含在半导体装置中。

对使用了本发明的粘接组合物的半导体装置的制造方法进行说明。本发明的半导体装置的制造方法中,将本发明的粘接组合物置于第一电路构件与第二电路构件之间,进行加热加压,由此将上述第一电路构件与上述第二电路构件电连接。

具体而言,首先,以第一电极与第二电极相对的方式,配置具有第一电极的第一电路构件、和具有第二电极的第二电路构件。接下来,将本发明的粘接组合物置于上述相对配置的第一电路构件与第二电路构件之间。此处,关于将粘接组合物置于上述位置的方法,可以是在电路构件的表面上直接涂布粘接组合物,然后除去挥发成分,也可以是在电路构件的表面贴合本发明的粘接膜,然后除去支承膜。粘接组合物可仅在第一及第二电路构件中的任一方的电路构件的电极侧的面上形成,也可在第一及第二电路构件这两方的电极侧的面上形成。然后,对它们进行加热加压,使第一电路构件与第二电路构件粘接,同时,使上述相对配置的第一电极与第二电极电连接。电极彼此的电连接可通过力学按压而实现,也可利用使用了焊料等的金属接合而实现。另外,可在第一电路构件及/或第二电路构件上形成贯通电极,也可在电路构件的单面及/或两面形成电极。

接下来,对使用本发明的粘接膜的情况的例子进行说明。通过使用该方法,可用粘接组合物的固化物将半导体芯片与形成有布线图案的电路基板之间的空隙密封。

首先,将粘接膜切成规定的大小,将其贴合于形成有布线图案的电路基板的布线图案面,除去支承膜。或者,可以将粘接膜贴合于切出半导体芯片之前的半导体晶片的凸起形成面,除去支承膜,然后切割半导体晶片,形成单个芯片,由此制作贴合有除去了支承膜的粘接膜的半导体芯片。粘接膜的贴合可利用辊式层合机、真空层合机等贴合装置进行。

将粘接膜贴合于电路基板或半导体芯片上并除去支承膜后,利用接合装置将半导体芯片安装在电路基板上。对于接合条件而言,只要在可良好地获得电连接的范围即可,没有特别限制,为了进行粘接组合物的固化,优选在温度为100℃以上、压力为1mN/凸起以上、时间为0.1秒以上的加热加压条件下进行。在下述接合条件下进行:更优选为120℃以上300℃以下、进一步优选为150℃以上250℃以下的温度,更优选为5mN/凸起以上50000mN/凸起以下、进一步优选为10mN/凸起以上10000mN/凸起以下的压力,更优选为1秒以上60秒以下、进一步优选为2秒以上30秒以下的时间。另外,也优选的是,在接合时,作为预压接,通过温度为50℃以上、压力为1mN/凸起以上、时间为0.1秒以上的加热加压,使半导体芯片上的凸起与电路基板上的焊盘电极(pad electrode)接触,然后在上述条件下进行接合。根据需要,也可在进行接合后,在50℃以上、200℃以下的温度下对带有半导体芯片的电路基板进行10秒以上、24小时以下加热。

本发明的粘接组合物可作为用于构成半导体装置的电路构件彼此的粘接、固定或密封的粘接组合物而合适地使用。另外,可用于构成层叠多层基板等电路基板的绝缘层、永久抗蚀剂、阻焊剂、密封剂等、半导体装置制造中使用的抗蚀剂等。此处所谓电路构件,是指构成半导体装置的半导体芯片、芯片部件、电路基板、金属布线材料等构件。作为电路构件的具体例,可举出形成有电镀凸起、柱形凸起等凸起的半导体芯片、电阻器芯片、电容器芯片等芯片部件、具有TSV(硅通孔)电极的半导体芯片及硅中介层等。需要说明的是,本发明中所谓半导体装置,是指通过利用半导体元件的特性而能发挥功能的全部装置,半导体电路及电子设备均被包含在半导体装置中。

另外,本发明的粘接组合物还可作为用于制作芯片粘结膜(die attach film)、切割芯片粘结膜(dicing die attach film)、引线框(lead frame)固定胶带、放热板、增强板、屏蔽材料的粘接剂、阻焊剂(solder resist)等的粘接组合物使用。

实施例

以下举出实施例等说明本发明,但本发明不受这些例子的限制。需要说明的是,实施例中的粘接组合物的评价利用以下方法进行。

<最大强度的测定>

以中心距离成为16mm的方式,固定夹具SHR-250-CAP-05-3(Dage Precision Industries,Inc.制),使用芯片剪切试验机(die shear tester)DAGE-SERIES-4000PXY(Dage Precision Industries,Inc.制),从各实施例·比较例中得到的试验片的槽的相反部分进行三点弯曲试验。对于芯片剪切试验(die shear test)而言,使用DS100控制版,于23℃以试验速度为166.6μm/秒、支点高度为200μm的条件进行。

<弹性模量的测定>

针对5mm×50mm×0.5mm尺寸的试验片,使用动态粘弹性装置DVA-200(ITK Co.,Ltd.制),在频率为1Hz、升温速度为5℃/分钟、测定应变为0.02%的条件下进行动态粘弹性测定,测定-40℃时的弹性模量(GPa)。

另外,各实施例、比较例中使用的(A)聚酰亚胺的合成利用以下方法进行。

合成例1聚酰亚胺的合成

在干燥氮气流下,将4.82g(0.0165摩尔)1,3-双(3-氨基苯氧基)苯、3.08g(0.011摩尔)3,3’-二氨基-4,4’-二羟基二苯基砜、4.97g(0.02摩尔)双氨基丙基四甲基二硅氧烷、0.47g(0.005摩尔)作为封端剂的苯胺溶解于130g的NMP中。向其中添加26.02g(0.05摩尔)2,2-双{4-(3,4-二羧基苯氧基)苯基}丙烷二酐和20g的NMP,于25℃反应1小时,接下来于50℃搅拌4小时。然后,于180℃搅拌5小时。搅拌结束后,将溶液投入到3L水中,进行过滤并回收沉淀,用水洗涤3次,然后利用真空干燥机于80℃干燥20小时。测定得到的聚合物固体的红外吸收光谱,结果在1780cm-1附近、1377cm-1附近检测到来源于聚酰亚胺的酰亚胺结构的吸收峰。通过上述操作,得到具有可与环氧基反应的官能团、包含11.6重量%通式(1)表示的结构的聚酰亚胺。向4g聚酰亚胺中添加6g四氢呋喃,在23℃下进行搅拌,将其溶解。

另外,各实施例、比较例中使用的其他成分如下所述。

(B)多官能环氧化合物

EPOTOTE PG-207GS(新日铁化学株式会社制),环氧当量314g/eq,液态环氧化合物

jER1010(三菱化学株式会社制),环氧当量3770g/eq

YL980(三菱化学株式会社制),环氧当量185g/eq,液态环氧化合物

jER1009(三菱化学株式会社制),环氧当量2719g/eq

N865(DIC株式会社制),环氧当量205g/eq

NC3000H(日本化药株式会社制),环氧当量287g/eq。

(C)环氧固化剂

2PZ(四国化成工业株式会社制,咪唑系固化剂)

NOVACURE HX-3941HP(Asahi Kasei E-materials Corporation制,芳香族多胺系固化剂)。

(D)无机粒子

SE2050-KNK(Admatechs Co.,Ltd.制),利用含有苯基氨基的硅烷偶联剂进行了处理的二氧化硅,甲基异丁基酮溶剂分散品,固态成分浓度为70.0重量%,二氧化硅的平均粒径为0.57μm)

SE2050-ENA(Admatechs Co.,Ltd.制),利用含有苯基氨基的硅烷偶联剂进行了处理的二氧化硅,卡必醇溶剂分散品,固态成分浓度为70.0重量%,二氧化硅的平均粒径为0.6μm)。

(E)有机溶剂

丙二醇单甲基醚乙酸酯(以下,有时称为“PGMEA”)(东京化成工业株式会社制)。

实施例1

将5.83g合成例1中得到的聚酰亚胺、9.32g的EPOTOTE PG-207GS(新日铁化学株式会社制,环氧当量314g/eq)、17.48g的jER1010(三菱化学株式会社制,环氧当量3770g/eq)、0.67g的2PZ(四国化成工业株式会社制)、111.0g的SE2050-KNK(Admatechs Co.,Ltd.制)、5.70g丙二醇单甲基醚乙酸酯添加到250mL塑料容器中,在室温下,在球磨机架台上搅拌96小时。然后,使用保留粒径为10μm的滤器,对得到的混合液进行加压过滤,得到树脂涂层剂1(T/M=970g/mol)。

需要说明的是,T/M的值的计算方法如下所述,在其他实施例·比较例中也利用同样的方法计算。

T(不挥发性有机成分的总克数)=5.83+9.32+17.48+0.67

M(不挥发性有机成分中的环氧基的摩尔数)=9.32/314+17.48/3770

T/M=(5.83+9.32+17.48+0.67)/(9.32/314+17.48/3770)=970

实施例2

将51.45g合成例1中得到的聚酰亚胺、65.17g的YL980(三菱化学株式会社制,环氧当量185g/eq)、51.45g的jER1009(三菱化学株式会社制,环氧当量2719g/eq)、3.43g的2PZ(四国化成工业株式会社制)、455.0g的SE2050-KNK(Admatechs Co.,Ltd.制)、73.50g的PGMEA添加到2L塑料容器中,在室温下,在球磨机架台上搅拌96小时。然后,使用保留粒径为10μm的滤器,对得到的混合液进行加压过滤,得到树脂涂层剂2(T/M=462g/mol)。利用粘度计RE105L(东机产业株式会社制),测定0.1rpm下的粘度,结果为2600cP。另外,在温度为25℃、湿度为50%的恒温恒湿器中保存24小时,然后,测定0.1rpm下的粘度,结果为2800cP,确认了室温下的保存稳定性优异。

实施例3

将44.10g合成例1中得到的聚酰亚胺、55.86g的YL980(三菱 化学株式会社制,环氧当量185g/eq)、44.10g的jER1009(三菱化学株式会社制,环氧当量2719g/eq)、2.94g的2PZ(四国化成工业株式会社制)、490.0g的SE2050-KNK(Admatechs Co.,Ltd.制)、63.00g的PGMEA添加到2L塑料容器中,在室温下,在球磨机架台上搅拌96小时。然后,使用保留粒径为10μm的滤器,对得到的混合液进行加压过滤,得到树脂涂层剂3(T/M=462g/m01)。

实施例4

将3.15g合成例1中得到的聚酰亚胺、8.82g的YL980(三菱化学株式会社制,环氧当量185g/eq)、18.90g的jER1010(三菱化学株式会社制,环氧当量3770g/eq)、0.63g的2PZ(四国化成工业株式会社制)、105.0g的SE2050-KNK(Admatechs Co.,Ltd.制)、13.50g的PGMEA添加到250mL塑料容器中,在室温下,在球磨机架台上搅拌96小时。然后,使用保留粒径为10μm的滤器,对得到的混合液进行加压过滤,得到树脂涂层剂4(T/M=598g/mol)。

实施例5

使用棒涂机,将实施例1中制备的树脂涂层剂1涂布至厚度75μm的支承膜Cerapeel HP2(U)(TORAY ADVANCED FILM Co.,Ltd.制)上,在已加热至100℃的烘箱中干燥10分钟。在涂膜面上贴合厚度为25μm的SR3(OHTSUKI INDUSTRIAL Co.,Ltd.制)作为保护膜,制造保护膜与粘接膜1的层叠体。粘接膜1中的由树脂涂层剂1得到的层的厚度为30μm。

实施例6

于在已加热至100℃的烘箱中进行10分钟干燥的条件下,使用多目的涂布机(井上金属工业株式会社)将实施例2中制备的树脂涂层剂2涂布至厚度75μm的支承膜Cerapeel HP2(U)(TORAY ADVANCED FILM Co.,Ltd.制)上,在涂膜面上贴合厚度为25μm的SR3(OHTSUKI INDUSTRIAL Co.,Ltd.制)作为保护膜,制造保护膜与粘接膜2的层叠体。粘接膜2中的由树脂涂层剂2得到的层的厚度为30μm。

实施例7

于在已加热至100℃的烘箱中进行10分钟干燥的条件下,使用多目的涂布机(井上金属工业株式会社)将实施例3中制备的树脂涂层剂3涂布至厚度75μm的支承膜Cerapeel HP2(U)(TORAY ADVANCED FILM Co.,Ltd.制)上,在涂膜面上贴合厚度为25μm的SR3(OHTSUKI INDUSTRIAL Co.,Ltd.制)作为保护膜,制造保护膜与粘接膜3的层叠体。粘接膜3中的由树脂涂层剂3得到的层的厚度为30μm。

实施例8

使用棒涂机,将实施例4中制备的树脂涂层剂4涂布至厚度75μm的支承膜Cerapeel HP2(U)(TORAY ADVANCED FILM Co.,Ltd.制)上,在已加热至100℃的烘箱中干燥10分钟。在涂膜面上贴合厚度为25μm的SR3(OHTSUKI INDUSTRIAL Co.,Ltd.制)作为保护膜,制造保护膜与粘接膜4的层叠体。粘接膜4中的由树脂涂层剂4得到的层的厚度为30μm。

实施例9

将实施例5中制造的保护膜与粘接膜1的层叠体切割成8cm见方尺寸,制作2片将保护膜从上述层叠体剥离而成的产物。接下来,以由树脂涂层剂1得到的层彼此重叠的方式将它们层叠,得到支承膜-由树脂涂层剂1得到的层(2层)-支承膜的层叠体。使用真空层合装置MVLP-500/600(株式会社名机制作所制),以上热盘和下热盘的温度为90℃、真空时间为20秒、加压力为0.3MPa、加压时间为30秒的条件进行层叠。

接下来,再制作1个上述层叠体,并制作2个将2个层叠体各自一侧的支承膜剥离而成的产物。接下来,以由树脂涂层剂1得到的层彼此重叠的方式将它们层叠,得到支承膜-由树脂涂层剂1得到的层(4层)-支承膜的层叠体。在与上述同样的条件下进行层叠,通过反复进行上述步骤,得到支承膜-由树脂涂层剂1得到的层(厚度2mm)-支承膜的层叠体。

接下来,将上述层叠体的两侧的支承膜剥离,制作作为替代而在两侧贴合“Teflon(注册商标)”膜而得到的产物。针对得到的“Teflon(注册商标)”膜-由树脂涂层剂1得到的层(厚度2mm)-“Teflon(注册商标)”膜的层叠体,首先经1小时升温至200℃,接下来于200℃放置2小时,由此进行由树脂涂层剂1得到的层(厚度2mm)的固化。从得到的“Teflon(注册商标)”膜-固化物-“Teflon(注册商标)”膜的层叠体剥离两侧的“Teflon(注册商标)”膜,得到固化物1。

使用切割装置DAD3350(DISCO Corporation制),切割制作的固化物1,制作宽度为2mm、长度为20mm、高度为4mm的长方体。在2mm×20mm的面上,在沿长度方向距宽2mm的两边10mm的位置即中央的位置,沿与宽2mm的两边平行的方向,使用切割装置DAD3350(DISCO Corporation制)形成深1.84mm、宽300μm的槽。以槽向上的方式将得到的带槽的片块(block piece)设置于水平的台座上。接下来,以刃的部分向下的方式将单刃99129(FEATHER Safety Razor Co.,Ltd.制)嵌入带槽的片块的槽部分,从比单刃的背的部分高3cm的位置,使重量为20g的砝码落下,制得在槽部分制作了裂缝的试验片1。利用光学显微镜确认有无裂缝。

针对得到的试验片1,利用上述方法测定最大强度,结果为36.0N。

接下来,利用同样的方法,制作支承膜-由树脂涂层剂1得到的层(厚度0.5mm)-支承膜的层叠体。剥离得到的层叠体的两侧的支承膜,制作作为替代而在两侧贴合“Teflon(注册商标)”膜而得到的产物。针对得到的“Teflon(注册商标)”膜-由树脂涂层剂1得到的层(厚度0.5mm)-“Teflon(注册商标)”膜的层叠体,在200℃的烘箱中加热15分钟,得到固化物1A。使用切割装置DAD3350(DISCO Corporation制),切割制作的固化物1A,制作宽度为5mm、长度为50mm、高度为0.5mm的板状试验片1A。针对得到的板状试验片1A,利用上述方法测定-40℃时的弹性模量,结果为13GPa。

实施例10

除了将粘接膜1变更为粘接膜2之外,利用与实施例9同样的方法,制作固化物2,除了将固化物1变更为固化物2之外,利用与实施例9同样的方法,制作试验片2。接下来,针对得到的试验片2,利用上述的方法测定最大强度,结果,最大强度为30.0N。

另外,除了将粘接膜1变更为粘接膜2之外,利用与实施例9同样的方法,制作固化物2A,除了将固化物1A变更为固化物2A之外,利用与实施例9同样的方法,制作板状试验片2A。接下来,针对得到的板状试验片2A,利用上述方法测定-40℃时的弹性模量,结果为11GPa。

实施例11

除了将粘接膜1变更为粘接膜3之外,利用与实施例9同样的方法,制作固化物3,除了将固化物1变更为固化物3之外,利用与实施例9同样的方法,制作试验片3。接下来,针对得到的试验片3,利用上述方法测定最大强度,结果,最大强度为33.0N。

另外,除了将粘接膜1变更为粘接膜3之外,利用与实施例9同样的方法,制作固化物3A,除了将固化物1A变更为固化物3A之外,利用与实施例9同样的方法,制作板状试验片3A。接下来,针对得到的板状试验片3A,利用上述方法测定-40℃时的弹性模量,结果为13GPa。

实施例12

除了将粘接膜1变更为粘接膜4之外,利用与实施例9同样的方法,制作固化物4,除了将固化物1变更为固化物4之外,利用与实施例9同样的方法,制作试验片4。接下来,针对得到的试验片4,利用上述方法测定最大强度,结果,最大强度为38.9N。

另外,除了将粘接膜1变更为粘接膜4之外,利用与实施例9同样的方法,制作固化物4A,除了将固化物1A变更为固化物4A之外,利用与实施例9同样的方法,制作板状试验片4A。接下来,针对得到的板状试验片4A,利用上述方法测定-40℃时的弹性模量, 结果为13GPa。

比较例1

将11.49g的YL980(三菱化学株式会社制,环氧当量185g/eq)、9.82g的jER1009(三菱化学株式会社制,环氧当量2719g/eq)、11.32g的N865(DIC株式会社制,环氧当量205g/eq)、0.67g的2PZ(四国化成工业株式会社制)、111.0g的SE2050-KNK(Admatechs Co.,Ltd.制)、5.70g的PGMEA添加到250mL塑料容器中,在室温下,在球磨机架台上搅拌96小时。然后,使用保留粒径为10μm的滤器,对得到的混合液进行加压过滤,得到树脂涂层剂5(T/M=275g/mol)。利用粘度计RE105L(东机产业株式会社制),测定1rpm下的粘度,结果为280cP。另外,在温度为25℃、湿度为50%的恒温恒湿器中保存24小时,然后,测定1rpm下的粘度,结果为280cP,未发现粘度变化。进而,在温度为25℃、湿度为50%的恒温恒湿器中保存120小时,然后测定1rpm下的粘度,结果为280cP,几乎未见粘度的变化,确认了室温下的保存稳定性优异。

比较例2

将0.98g合成例1中得到的聚酰亚胺、11.49g的YL980(三菱化学株式会社制,环氧当量185g/eq)、8.84g的jER1009(三菱化学株式会社制,环氧当量2719g/eq)、11.32g的N865(DIC株式会社制,环氧当量205g/eq)、0.67g的2PZ(四国化成工业株式会社制)、111.00g的SE2050-KNK(Admatechs Co.,Ltd.制)、5.70g的PGMEA添加到250mL塑料容器中,在室温下,在球磨机架台上搅拌96小时。然后,使用保留粒径为10μm的滤器,对得到的混合液进行加压过滤,得到树脂涂层剂6(T/M=276g/mol)。

比较例3

将11.49g的YL980(三菱化学株式会社制,环氧当量185g/eq)、9.82g的jER1010(三菱化学株式会社制,环氧当量3770g/eq)、11.32g的N865(DIC株式会社制,环氧当量205g/eq)、0.67g的2PZ(四国化成工业株式会社制)、111.00g的SE2050-KNK(Admatechs Co., Ltd.制)、5.70g的PGMEA添加到250mL塑料容器中,在室温下,在球磨机架台上搅拌96小时。然后,使用保留粒径为10μm的滤器,对得到的混合液进行加压过滤,得到树脂涂层剂7(T/M=278g/mol)。

比较例4

将10.96g的jER1009(三菱化学株式会社制,环氧当量2719g/eq)、12.63g的N865(DIC株式会社制,环氧当量205g/eq)、78.00g的SE2050-KNK(Admatechs Co.,Ltd.制)、15.60g的PGMEA添加到250mL塑料容器中,在室温下,在球磨机架台上搅拌72小时。进而添加12.81g微囊型固化促进剂NOVACURE HX-3941HP(Asahi Kasei E-materials Corporation制),在室温下,在球磨机架台上搅拌2小时。然后,使用保留粒径为10μm的滤器,对得到的混合液进行加压过滤,得到树脂涂层剂8。利用粘度计RE105L(东机产业株式会社制),测定0.1rpm下的粘度,结果为3200cP。另外,在温度为25℃、湿度为50%的恒温恒湿器中保存24小时,然后,测定0.1rpm下的粘度,结果为4030cP,未发现粘度大幅上升。进而在温度为25℃、湿度为50%的恒温恒湿器中保存48小时,然后测定0.1rpm下的粘度,结果为5700cP,由于粘度上升,所以确认了室温下的保存稳定性存在问题。

比较例5

将9.82g合成例1中得到的聚酰亚胺、11.49g的YL980(三菱化学株式会社制,环氧当量185g/eq)、11.32g的N865(DIC株式会社制,环氧当量205g/eq)、0.67g的2PZ(四国化成工业株式会社制)、111.0g的SE2050-KNK(Admatechs Co.,Ltd.制)、5.70g的PGMEA添加到250mL塑料容器中,在室温下,在球磨机架台上搅拌96小时。然后,使用保留粒径为10μm的滤器,对得到的混合液进行加压过滤,得到相对于100重量份的环氧化合物而言、聚酰亚胺约为43重量份、并且环氧固化剂约为2.7重量份的树脂涂层剂9(T/M=284g/mol)。

比较例6

将4.91g的合成例1中得到的聚酰亚胺、6.66g的YL980(三菱化学株式会社制,环氧当量185g/eq)、4.91g的jER1009(三菱化学株式会社制,环氧当量2719g/eq)、16.15g的NC3000H(日本化药株式会社制,环氧当量287g/eq)、0.67g的2PZ(四国化成工业株式会社制)、111.0g的SE2050-KNK(Admatechs Co.,Ltd.制)、5.70g的PGMEA添加到250mL塑料容器中,在室温下,在球磨机架台上搅拌96小时。然后,使用保留粒径为10μm的滤器,对得到的混合液进行加压过滤,得到树脂涂层剂10(T/M=354g/mol)。

比较例7

将0.88g的合成例1中得到的聚酰亚胺、5.88g的YL980(三菱化学株式会社制,环氧当量185g/eq)、7.79g的jER1010(三菱化学株式会社制,环氧当量3770g/eq)、14.26g的NC3000H(日本化药株式会社制,环氧当量287g/eq)、0.59g的2PZ(四国化成工业株式会社制)、98.00g的SE2050-KNK(Admatechs Co.,Ltd.制)、12.60g的PGMEA添加到250mL塑料容器中,在室温下,在球磨机架台上搅拌96小时。然后,使用保留粒径为10μm的滤器,对得到的混合液进行加压过滤,得到树脂涂层剂11(T/M=352g/mol)。

比较例8

使用棒涂机,将比较例1中制备的树脂涂层剂5涂布至厚度75μm的支承膜的Cerapeel HP2(U)(TORAY ADVANCED FILM Co.,Ltd.制)上,在已加热至100℃的烘箱中干燥10分钟。在涂膜面上贴合厚度为25μm的SR3(OHTSUKI INDUSTRIAL Co.,Ltd.制)作为保护膜,制造保护膜与粘接膜5的层叠体。粘接膜5中的由树脂涂层剂5得到的层的厚度为30μm。

比较例9

使用棒涂机,将比较例2中制备的树脂涂层剂6涂布至厚度75μm的支承膜Cerapeel HP2(U)(TORAY ADVANCED FILM Co.,Ltd.制)上,在已加热至100℃的烘箱中干燥10分钟。在涂膜面上贴合厚度为25μm的SR3(OHTSUKI INDUSTRIAL Co.,Ltd.制)作 为保护膜,制造保护膜与粘接膜6的层叠体。粘接膜6中的由树脂涂层剂6得到的层的厚度为30μm。

比较例10

使用棒涂机,将比较例3中制备的树脂涂层剂7涂布至厚度75μm的支承膜Cerapeel HP2(U)(TORAY ADVANCED FILM Co.,Ltd.制)上,在已加热至100℃的烘箱中干燥10分钟。在涂膜面上贴合厚度为25μm的SR3(OHTSUKI INDUSTRIAL Co.,Ltd.制)作为保护膜,制造保护膜与粘接膜7的层叠体。粘接膜7中的由树脂涂层剂7得到的层的厚度为30μm。

比较例11

使用棒涂机,将比较例5中制备的树脂涂层剂9涂布至厚度75μm的支承膜Cerapeel HP2(U)(TORAY ADVANCED FILM Co.,Ltd.制)上,在已加热至100℃的烘箱中干燥10分钟。在涂膜面上贴合厚度为25μm的SR3(OHTSUKI INDUSTRIAL Co.,Ltd.制)作为保护膜,制造保护膜与粘接膜9的层叠体。粘接膜9中的由树脂涂层剂9得到的层的厚度为30μm。

比较例12

使用棒涂机,将比较例6中制备的树脂涂层剂10涂布至厚度75μm的支承膜Cerapeel HP2(U)(TORAY ADVANCED FILM Co.,Ltd.制)上,在已加热至100℃的烘箱中干燥10分钟。在涂膜面上贴合厚度为25μm的SR3(OHTSUKI INDUSTRIAL Co.,Ltd.制)作为保护膜,制造保护膜与粘接膜10的层叠体。粘接膜10中的由树脂涂层剂10得到的层的厚度为30μm。

比较例13

使用棒涂机,将比较例7中制备的树脂涂层剂11涂布至厚度75μm的支承膜Cerapeel HP2(U)(TORAY ADVANCED FILM Co.,Ltd.制)上,在已加热至100℃的烘箱中干燥10分钟。在涂膜面上贴合厚度为25μm的SR3(OHTSUKI INDUSTRIAL Co.,Ltd.制)作为保护膜,制造保护膜与粘接膜11的层叠体。粘接膜11中的由树 脂涂层剂11得到的层的厚度为30μm。

比较例14

除了将粘接膜1变更为粘接膜5之外,利用与实施例9同样的方法,制作固化物5,除了将固化物1变更为固化物5之外,利用与实施例9同样的方法,制作试验片5。接下来,针对得到的试验片5,利用上述方法测定最大强度,结果,最大强度为15.1N。

另外,除了将粘接膜1变更为粘接膜5之外,利用与实施例9同样的方法,制作固化物5A,除了将固化物1A变更为固化物5A之外,利用与实施例9同样的方法,制作板状试验片5A。接下来,针对得到的板状试验片5A,利用上述方法测定-40℃时的弹性模量,结果为13GPa。

比较例15

除了将粘接膜1变更为粘接膜6之外,利用与实施例9同样的方法,制作固化物6,除了将固化物1变更为固化物6之外,利用与实施例9同样的方法,制作试验片6。接下来,针对得到的试验片6,利用上述方法测定最大强度,结果,最大强度为14.4N。

另外,除了将粘接膜1变更为粘接膜6之外,利用与实施例9同样的方法,制作固化物6A,除了将固化物1A变更为固化物6A之外,利用与实施例9同样的方法,制作板状试验片6A。接下来,针对得到的板状试验片6A,利用上述方法测定-40℃时的弹性模量,结果为13GPa。

比较例16

除了将粘接膜1变更为粘接膜7之外,利用与实施例9同样的方法,制作固化物7,除了将固化物1变更为固化物7之外,利用与实施例9同样的方法,制作试验片7。接下来,针对得到的试验片7,利用上述方法测定最大强度,结果,最大强度为13.9N。

另外,除了将粘接膜1变更为粘接膜7之外,利用与实施例9同样的方法,制作固化物7A,除了将固化物1A变更为固化物7A之外,利用与实施例9同样的方法,制作板状试验片7A。接下来, 针对得到的板状试验片7A,利用上述方法测定-40℃时的弹性模量,结果为13GPa。

比较例17

除了将粘接膜1变更为粘接膜9之外,利用与实施例9同样的方法,制作固化物9,除了将固化物1变更为固化物9之外,利用与实施例9同样的方法,制作试验片9。接下来,针对得到的试验片9,利用上述方法测定最大强度,结果,最大强度为15.4N。

另外,除了将粘接膜1变更为粘接膜9之外,利用与实施例9同样的方法,制作固化物9A,除了将固化物1A变更为固化物9A之外,利用与实施例9同样的方法,制作板状试验片9A。接下来,针对得到的板状试验片9A,利用上述方法测定-40℃时的弹性模量,结果为13GPa。

比较例18

除了将粘接膜1变更为粘接膜10之外,利用与实施例9同样的方法,制作固化物10,除了将固化物1变更为固化物10之外,利用与实施例9同样的方法,制作试验片10。接下来,针对得到的试验片10,利用上述方法测定最大强度,结果,最大强度为19.6N。

另外,除了将粘接膜1变更为粘接膜10之外,利用与实施例9同样的方法,制作固化物10A,除了将固化物1A变更为固化物10A之外,利用与实施例9同样的方法,制作板状试验片10A。接下来,针对得到的板状试验片10A,利用上述方法测定-40℃时的弹性模量,结果为13GPa。

比较例19

除了将粘接膜1变更为粘接膜11之外,利用与实施例9同样的方法,制作固化物11,除了将固化物1变更为固化物11之外,利用与实施例9同样的方法,制作试验片11。接下来,针对得到的试验片11,利用上述方法测定最大强度,结果,最大强度为18.0N。

另外,除了将粘接膜1变更为粘接膜11之外,利用与实施例9同样的方法,制作固化物11A,除了将固化物1A变更为固化物11A 之外,利用与实施例9同样的方法,制作板状试验片11A。接下来,针对得到的板状试验片11A,利用上述方法测定-40℃时的弹性模量,结果为13GPa。

实施例13

将3.78g的合成例1中得到的聚酰亚胺、15.12g的YL980(三菱化学株式会社制,环氧当量185g/eq)、15.12g的NC3000H(日本化药株式会社制,环氧当量287g/eq)、28.73g的jER1009(三菱化学株式会社制,环氧当量2719g/eq)、11.34g的jER1010(三菱化学株式会社制,环氧当量3770g/eq)、1.51g的2PZ(四国化成工业株式会社制)、252.0g的SE2050-ENA(Admatechs Co.,Ltd.制)、22.40g的卡必醇添加到500mL塑料容器中,在室温下,在球磨机架台上搅拌96小时。然后,使用保留粒径为10μm的滤器,对得到的混合液进行加压过滤,得到树脂涂层剂1B(T/M=511g/mol)。

实施例14

将8.64g的合成例1中得到的聚酰亚胺、16.85g的YL980(三菱化学株式会社制,环氧当量185g/eq)、17.28g的jER1010(三菱化学株式会社制,环氧当量3770g/eq)、0.43g的2PZ(四国化成工业株式会社制)、144.0g的SE2050-ENA(Admatechs Co.,Ltd.制)、12.80g的卡必醇添加到500mL塑料容器中,在室温下,在球磨机架台上搅拌96小时。然后,使用保留粒径为10μm的滤器,对得到的混合液进行加压过滤,得到树脂涂层剂2B(T/M=452g/mol)。

实施例15

于在已加热至100℃的烘箱中进行10分钟干燥的条件下,使用多目的涂布机(井上金属工业株式会社)将实施例13中制备的树脂涂层剂1B涂布至厚度75μm的支承膜Cerapeel HP2(U)(TORAY ADVANCED FILM Co.,Ltd.制),在涂膜面上贴合厚度为25μm的SR3(OHTSUKI INDUSTRIAL Co.,Ltd.制)作为保护膜,制造保护膜与粘接膜1B的层叠体。粘接膜1B中的由树脂涂层剂1B得到的层的厚度为30μm。

实施例16

于在已加热至100℃的烘箱中进行10分钟干燥的条件下,使用多目的涂布机(井上金属工业株式会社)将实施例14中制备的树脂涂层剂2B涂布至厚度75μm的支承膜Cerapeel HP2(U)(TORAY ADVANCED FILM Co.,Ltd.制)上,在涂膜面上贴合厚度为25μm的SR3(OHTSUKI INDUSTRIAL Co.,Ltd.制)作为保护膜,制造保护膜与粘接膜2B的层叠体。粘接膜2B中的由树脂涂层剂2B得到的层的厚度为30μm。

实施例17

除了将粘接膜1变更为粘接膜1B之外,利用与实施例9同样的方法,制作固化物1B,除了将固化物1变更为固化物1B之外,利用与实施例9同样的方法,制作试验片1B。接下来,针对得到的试验片1B,利用上述方法测定最大强度,结果,最大强度为34.3N。

另外,除了将粘接膜1变更为粘接膜1B之外,利用与实施例9同样的方法,制作固化物1B,除了将固化物1A变更为固化物1B之外,利用与实施例9同样的方法,制作板状试验片1B。接下来,针对得到的板状试验片1B,利用上述方法测定-40℃时的弹性模量,结果为13GPa。

实施例18

除了将粘接膜1变更为粘接膜2B之外,利用与实施例9同样的方法,制作固化物2B,除了将固化物1变更为固化物2B之外,利用与实施例9同样的方法,制作试验片2B。接下来,针对得到的试验片2B,利用上述方法测定最大强度,结果,最大强度为29.0N。

另外,除了将粘接膜1变更为粘接膜2B之外,利用与实施例9同样的方法,制作固化物2B,除了将固化物1A变更为固化物2B之外,利用与实施例9同样的方法,制作板状试验片2B。接下来,针对得到的板状试验片2B,利用上述方法测定-40℃时的弹性模量,结果为13GPa。

实施例19

使用狭缝涂布机将实施例2中制备的树脂涂层剂2涂布于12英寸晶片上,利用加热板于80℃干燥基板10分钟。在与涂布方向为相同方向、并且通过300mm晶片的中心的直线上,测定距涂布始端5cm、10cm、15cm、20cm、25cm的地点的膜厚,结果厚度为36±1μm,确认了形成了面内均匀性优异的涂膜。在已设定为200℃的烘箱中将得到的基板烧成15分钟,在晶片上形成固化膜。目视确认了在晶片与固化膜之间未发生剥离。

实施例20

使用狭缝涂布机将实施例4中制备的树脂涂层剂4涂布于12英寸晶片上,利用加热板于80℃干燥基板10分钟。在与涂布方向为相同方向、并且通过300mm晶片的中心的直线上,测定距涂布始端5cm、10cm、15cm、20cm、25cm的地点的膜厚,结果厚度为25±1μm,确认了形成了面内均匀性优异的涂膜。在已设定为200℃的烘箱中将得到的基板烧成15分钟,在晶片上形成固化膜。目视确认了在晶片与固化膜之间未发生剥离。

实施例21

使用狭缝涂布机,将实施例2中制备的树脂涂层剂2涂布至以100μm的间距(pitch)配置有直径为70μm的铜柱(高度20μm)的12英寸晶片上,利用加热板于80℃干燥基板10分钟。确认了无铜柱的部分的膜厚为41μm,有铜柱的部分与无铜柱的部分的层差小于1μm。在已设定为200℃的烘箱中将得到的基板烧成15分钟,在晶片上形成固化膜。目视确认了在晶片与固化膜之间未发生剥离。

实施例22

准备从实施例6中制造的保护膜与粘接膜2的层叠体剥离保护膜而得到的产物,按照由实施例2中制备的树脂涂层剂2得到的层、与1cm×1cm尺寸的芯片(硅晶片的厚度为625μm,以50μm的间距配置有直径为25μm的铜柱(高度25μm)的芯片)的铜柱形成面重叠的方式将它们层叠,制作基板层叠体1。使用真空层合装置MVLP-500/600(株式会社名机制作所制),以上热盘和下热盘的温度为 90℃、真空时间为20秒、加压力为0.3MPa、加压时间为30秒的条件进行层叠。接下来,准备从实施例6中制造的保护膜与粘接膜2的层叠体剥离保护膜而得到的产物,以由实施例2中制备的树脂涂层剂2得到的层与15mm×15mm尺寸的玻璃环氧基板(厚度为10mm)重叠的方式将它们层叠,制作基板层叠体2。使用真空层合装置MVLP-500/600(株式会社名机制作所制),以上热盘和下热盘的温度为90℃、真空时间为20秒、加压力为0.3MPa、加压时间为30秒进行层叠。

接下来,准备从基板层叠体1剥离支承膜而得到的产物、和从基板层叠体2剥离支承膜而得到的产物,以由实施例2中制备的树脂涂层剂2得到的层彼此重叠的方式将它们层叠,制作基板层叠体3。使用真空层合装置MVLP-500/600(株式会社名机制作所制),以上热盘和下热盘的温度为90℃、真空时间为20秒、加压力为0.3MPa、加压时间为30秒的条件进行层叠。于180℃对得到的基板层叠体3加热1小时,制作基板层叠体4。将得到的基板层叠体4在温度为85℃、湿度为85%的恒温恒湿度槽(楠本化成株式会社制,FX214P)内放置168小时,得到基板层叠体5。针对得到的基板层叠体5,使用冷热冲击装置(ESPEC CORPORATION制,TSE-11-A),重复1000次在-55℃的温度下放置30分钟、在125℃的温度下放置30分钟的工序,得到基板层叠体6。用扫描电子显微镜(日本电子株式会社制,JSM-6510A)观察基板层叠体6的截面,确认了在由树脂涂层剂2得到的层与芯片的硅晶片部分之间不存在缝隙。另外,确认了在由树脂涂层剂2得到的层与铜柱部分之间不存在缝隙。

实施例23

准备从实施例6中制造的保护膜与粘接膜2的层叠体剥离保护膜而得到的产物,将由实施例2中制备的树脂涂层剂2得到的层层叠于1cm×1cm尺寸的铜板(厚度15mm)上,制作基板层叠体7。使用真空层合装置MVLP-500/600(株式会社名机制作所制),以 上热盘和下热盘的温度为90℃、真空时间为20秒、加压力为0.3MPa、加压时间为30秒的条件进行层叠。接下来,准备从实施例6中制造的保护膜与粘接膜2的层叠体剥离保护膜而得到的产物,以由实施例2中制备的树脂涂层剂2得到的层与15mm×15mm尺寸的玻璃环氧基板(厚度10mm)重叠的方式将它们层叠,制作基板层叠体8。使用真空层合装置MVLP-500/600(株式会社名机制作所制),以上热盘和下热盘的温度为90℃、真空时间为20秒、加压力为0.3MPa、加压时间为30秒的条件进行层叠。

接下来,准备从基板层叠体7剥离支承膜而得到的产物、和从基板层叠体8剥离支承膜而得到的产物,以由实施例2中制备的树脂涂层剂2得到的层彼此重叠的方式将它们层叠,制作基板层叠体9。使用真空层合装置MVLP-500/600(株式会社名机制作所制),以上热盘和下热盘的温度为90℃、真空时间为20秒、加压力为0.3MPa、加压时间为30秒的条件进行层叠。于180℃对得到的基板层叠体9加热1小时,制作基板层叠体10。针对得到的基板层叠体10,使用冷热冲击装置(ESPEC CORPORATION制,TSE-11-A),重复1000次在-55℃的温度下放置30分钟、在125℃的温度下放置30分钟的工序,目视确认了铜板发生粘接。

实施例24

准备从利用与实施例6同样的方法制造的保护膜与粘接膜2的层叠体(由树脂涂层剂2得到的层的厚度为50μm)剥离保护膜而得到的产物,以由树脂涂层剂2得到的层、与带铜柱凸起的TEG芯片(WALTS CO.,LTD.制,WALTS-TEG CC80-0101JY(SiN)-ModelI)的铜柱凸起形成面重叠的方式将它们层叠,制作基板层叠体11。使用真空层合装置MVLP-500/600(株式会社名机制作所制),以上热盘和下热盘的温度为90℃、真空时间为20秒、加压力为0.3MPa、加压时间为30秒的条件进行层叠。而后,剥离支承膜,制作带粘接组合物的评价芯片。然后,利用倒装芯片接合装置(Toray Engineering Co.,Ltd.制,FC-3000WS),在作为被粘接物的基板 (WALTS CO.,LTD.制,WALTS-KIT CC80-0103JY[MAP]-ModelI(Cu+OSP规格(specification)))上进行倒装芯片接合,得到半导体装置。对于倒装芯片接合的条件而言,将基板放置在已加热至140℃的接合台上,在温度为140℃、压力为150N/芯片、时间为1秒的条件下进行预压接后,在温度为250℃、压力为150℃的条件下进行时间为5秒的正式压接。针对得到的半导体装置,利用冷热冲击装置(ESPEC CORPORATION制,TSE-11-A),重复500次在-55℃的温度下放置30分钟、在125℃的温度下放置30分钟的工序,确认了导通。

将树脂涂层剂的组成归纳于表1,将试验片的最大强度及-40℃时的弹性模量归纳于表2。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号