法律状态公告日
法律状态信息
法律状态
2017-04-12
授权
授权
2016-09-14
实质审查的生效 IPC(主分类):F23G5/44 申请日:20160401
实质审查的生效
2016-08-17
公开
公开
技术领域
本发明涉及能源工程领域,特别地,涉及一种循环流化床生活垃圾焚烧锅炉入炉垃圾热值实时预测系统及方法。
背景技术
垃圾焚烧由于能够良好实现垃圾处理技术的减容化、减量化、无害化和资源化,近十几年内,在国家相关产业政策的引导下,国内垃圾焚烧行业取得了蓬勃的发展。目前,CFB垃圾焚烧技术已经在国内的多个城市进行了推广应用,截止2013年,国内已建成垃圾焚烧锅炉60余台,日处理垃圾量5.6万吨,为我国的垃圾焚烧处理行业做出了重要的贡献。然而国内的城市生活垃圾多为混合收集,导致入厂、入炉垃圾成分较为复杂,表现出低热偏值、水分较高和波动性较大的特征。入炉垃圾热值的波动性迫使运行人员频繁地对锅炉的运行状态进行调整,会给CFB垃圾焚烧锅炉的运行带来的不良的影响,尤其是对床温的稳定控制,当含水量很高、热值极低的垃圾进入炉膛,会在短时间内造成床温急剧降低,甚至熄火,给锅炉的安全稳定造成带来隐患。因此,对入炉垃圾的热值进行监测具有十分重要的意义。
目前,还没有一种可靠的垃圾热值在线测量硬件设备应用于实际生产过程,常见的垃圾热值测量方法主要包括实验法和软测量方法。实验方法主要是指采用弹式量热计的方法,该方法的测量结果精确,但该方法的样品预处理和后续试验过程耗时长、成本高,难以满足实际生产过程对实时性和持续性的要求。另一种方法主要是指基于离线试验结果的经验计算模型,主要分为基于工业分析的热值软测量模型、基于元素分析的热值软测量模型和基于垃圾物理组分的热值软测量模型,这三种类型模型都是通过对大量实验结果进行数据挖掘的得到的,有一定程度的可靠性。然而,这些方法自身就有实验法的限制,而且,垃圾是非均匀物质,所取样品是否能够代表入炉垃圾的特性难以确定。这种方法目前主要用于离线的统计分析,难以胜任实时且不间断热值监测工作。因此,构建一种高效低成本的循环流化床生活垃圾焚烧锅炉入炉热值的实时软测量系统和方法具有十分重要的意义。
发明内容
本发明的目的在于针对现有技术的不足,提供一种循环流化床生活垃圾焚烧锅炉入炉热值实时预测系统及方法。
本发明解决其技术问题所采用的技术方案是:一种循环流化床生活垃圾焚烧锅炉入炉热值的实时预测系统。该系统与循环流化床锅炉的集散控制系统相连,包括数据通讯接口和上位机,所述上位机包括:
第一信号采集模块。该模块用于采集CFB生活垃圾焚烧锅炉在焚烧指定生活垃圾时的运行工况状态参数和操作变量,并组成垃圾热值预测模型输入变量的训练样本矩阵X(m×n),m表示样本个数,n表示变量的个数;
数据预处理模块。对X(m×n)进行粗大误差处理和随机误差处理,以摒除那些并不是反映锅炉正常运行工况的虚假信息,将锅炉停炉、压火、给料机堵塞等异常工况排除掉,为了避免预测模型的参数之间量纲和数量级的不同对模型性能造成的不良影响,训练样本输入变量均经过归一化处理后映射到[0,1]区间内,得到标准化后的训练样本X*(m×n)。预处理过程采用以下步骤进行:
1.1)根据拉伊达准则,剔除训练样本X(m×n)中的野值;
1.2)剔除锅炉停炉运行工况,锅炉停炉时炉膛给煤机和给料机的开度为零,并且炉膛中温度接近常温;
1.3)剔除炉膛压火运行状况,锅炉压火时一次风机、二次风机引风机炉膛给煤机和给料机的开度为零,但是炉膛密相区的温度维持在350℃~450℃;
1.4)剔除给料机堵塞工况,给料机堵塞需要运行人员通过给料口的摄像头拍摄的画面对给料情况进行判断,给料机堵塞时,运行人员会显著地调高给料机的开度,反映在运行数据上,即给料机的开度大于35%;
1.5)数据归一化处理。按照式(1)将数据变量映射到[0 1]的区间内。
式中XJ表示第J变量所组成的向量,min()表示最小值,max()表示最大值。
知识库模块。将弹筒量热仪测得的垃圾热值作为训练样本的输出向量Y*(m×1)。
智能学习模块。智能学习模块是生活垃圾热值预测系统的核心部分,该模块采用了粒子群优化算法(Particle Swarm Optimization,PSO)、减法聚类算法(SubtractiveClustering,SC)和模糊自适应神经网络(Adaptive Neuro-Fuzzy Inference System,ANFIS)算法集成建模,对训练样本进行参数寻优和学习,构建能够表征循环流化床生活垃圾焚烧锅炉入炉垃圾热值特性的预测模型。该模型中利用减法聚类算法对样本数据进行特征提取,自适应的确定初始模糊规则和模糊神经网络的初始结构参数,再结合最小二乘估计法和误差反向传播算法对模糊神经网络的参数进行学习训练。在该模型中聚类半径是影响建模性能的关键参数,因此以预测精度为目标,利用PSO算法寻找聚类半径的最优值。算法步骤如下:
2.1)初始化粒子群。以聚类半径rα作为粒子,15个粒子作为一个种群,每个粒子随机赋予[0.20.9]区间内的随机值,其中第i个粒子的位置的向量标示为ri,i=1,2,…,15;
2.2)以ri为聚类半径,进行减法聚类分析。减法聚类算法用于对建模数据样本的空间进行初始划分以及模糊规则的确定,K-均值聚类算法和模糊C-均值聚类算法均需预设聚类中心的数目,没有充分利用样本空间的蕴含的对象特征信息。而减法聚类算法是一种基于山峰函数的聚类算法,它将每个数据点作为可能的聚类中心,并根据各个数据点周围的数据点密度来计算该点作为聚类中心的可能性。
每个数据点Xi作为聚类中心的可能性Pi由式(2)来定义:
式中m表示n维输入空间中全部的数据点数,Xi=[Xi1,Xi2,...,Xin]、Xj=[Xj1,Xj2,...,Xjn]是具体的数据点,ri是一个正数,定义了该点的邻域半径,||·||符号表示欧式距离。被选为聚类中心的点具有最高的数据点密度,同时该该数据点周围的点被排除作为聚类中心的可能性。第一个聚类中心为XC1,数据点密度为Pc1。选出第一个聚类中心后,继续采用类似的方法确定下一个聚类中心,但需消除已有聚类中心的影响,修改密度指标的山峰函数如下:
其中,rβ定义了一个密度指标显著减小的邻域,为了避免出现十分接近的聚类中心,rβ=1.5ri。循环重复上述过程直到所有剩余数据点作为聚类中心的可能性低于某一阈值δ,即Pck/Pc1<δ。
2.3)ANFIS模型训练。不失一般性,假定减法聚类算法得到两个聚类中心和得到两条模糊规则:
Rule 1:IFisandisand… andisTHEN
Rule 2:IFisandisand… andisTHEN
ANFIS系统的第一层为系统的输入层,由n个节点组成,它的作用是将输入向量按原值传递到下一层。
第二层为模糊化层,由2n个节点组成,它的作用是计算各输入分量属于各语言变量值模糊集合的隶属函数该层采用高斯函数进行模糊化处理,每个节点的输出:
式中,cij和σij分别表示隶属函数的中心和宽度。
第三层共有两个节点,每个节点代表一条模糊规则,他的作用是完成模糊逻辑的“与”操作,采用product推理计算出每条规则的适应度值,即
第四层为归一化层,节点数与第三层一样,它所实现的是归一化计算,即
第五层为结论层,该层与第三层的节点数相同。其节点输出为
第六层为输出层及去模糊化层,只有一个节点,使用面积中心法进行解模糊,得到网络的最终输出为
对于模糊神经网络模型的所有参数,采用混合最小二乘法的梯度下降算法进行学习,步骤如下:
2.3.1)在固定高斯型隶属函数的中心和宽度的前提下,利用最小二乘法计算线性结论参数{r,p};
2.3.2)固定结论参数,采用误差反向传播算法对高斯函数的中心和宽度进行学习可得:
ΔS(t)=S(t+1)-S(t)(10)
式中S为参数c和σ,ηs为学习率,α为动量项,f为预测输出,f*为实际输出,E为平方误差和,n为迭代步数。利用训练样本数据,重复上述步骤,直到满足误差指标或者达到最大训练次数。
2.4)计算适应度值。利用训练得到的预测模型计算垃圾热值将垃圾热值与实际测量值y*进行比较,并以误差平方和作为粒子的适应度值MSE,适应度计算公式如下:
2.5)更新极值。以适应度值为评价指标,比较当代粒子与上一代粒子之间的适应度值大小,如果当前粒子的适应度值优于上一代,则将当前粒子的位置设置为个体极值,否则个体极值保持不变。同时获取当代所有粒子适应度值最优的粒子,并与上一代最优粒子进行比较,如果当代最优粒子的适应度值优于上一代最优粒子的适应度值,则将当代粒子的最优适应度值设置为全局最优值,否则全局最优值保持不变。
2.6)更新粒子。根据最新的个体极值和全局极值,按照(13)式和(14)式更新粒子的速度vid(t)和位置xid(t)。
vid(t+1)=ωvid(t)+c1r1(pid-xid(t))+c2r2(pgd-xid(t))>
xid(t+1)=xid(t)+vid(t+1)>
t是粒子群优化算法的寻优代数。更进一步,为了改善基本粒子群算法容易陷入局部极值和收敛速度慢的缺陷,在PSO算法的基础上引进了动态加速常数c1、c2和惯性权重ω:
其中,Tmax为最大寻优代数,ωmax为最大惯性权重,ωmin为最小惯性权重,R1、R2、R3、R4为常数。
2.7)算法停止条件算法判定。判断是否达到最大迭代次数或者到达预测精度的要求,如果没有达到则返回步骤2.2),利用更新的聚类半径继续搜索,否则退出搜索。
2.8)利用最终寻优得到的聚类半径,对样本进行聚类分析和ANFIS模型训练,得到达到训练终止条件的ANFIS模型,即垃圾热值预测模型。
第二信号采集模块。用于从数据库中选择需要预测垃圾热值的运行工况,或者实时地采集当前锅炉的运行工况。
预测模块。该模块用于对指定的样本进行垃圾热值的预测,或者对当前锅炉运行工况下的垃圾热值进行实时预测。
结果显示模块。显示垃圾热值的预测结果,或者对垃圾热值的预测结果进行统计分析。
一种循环流化床生活垃圾焚烧入炉垃圾热值实时预测方法,该方法包括以下步骤:
1)选择变量并采集样本:利用生活垃圾在循环流化床锅炉中焚烧的机理,选择垃圾热值预测模型的输入变量,选择时综合考虑以下策略:a)入炉燃料是由煤和垃圾组成的,对同一种煤,热值是比较稳定的,所以运行人员在判断入炉生活垃圾热值的高低的时候会将当前给煤量考虑进去;b)运行人员在司炉的时候,有一个重要的任务就是将床温控制在850℃~950℃之间,生活垃圾入炉后床温的变化情况是判断其热值最直接的参考依据,在其它运行参数不变的情况下,如果垃圾入炉后床温呈现出降低的趋势,要维持同样水平的床温时,投入的给煤量越多,则垃圾的含水率越高,热值越低,反之则垃圾的热值越高;c)CFB生活垃圾焚烧锅炉采用分级送风的方式,密相区处于缺氧燃烧的状态,而生活垃圾中挥发分含量占有较高的比重,通常是固定碳含量的5~7倍,同时,垃圾中水分会降低挥发分的燃烧速率,大量的挥发分在炉膛的中部和上部燃烧,产生的热烟气会提高炉膛出口的温度。如果生活垃圾进入炉膛后,在未改变其它燃烧参数的状况下,炉膛出口的温度呈现降低的趋势,则表明入炉垃圾中挥发分的含量降低,垃圾热值降低,反之则说明垃圾的热值升高;d)在考虑床温、稀相区温度和炉膛出口温度的变化趋势时,需要将这些温度的变化程度和温度水平同时考虑在内;e)锅炉在运行过程中会根据炉内流化状况、烟气含氧量和炉膛温度等参数调整一二次风量,影响生活垃圾在炉内的燃烧过程,所以要综合考虑风量变化带来的影响;f)入炉燃料的热值最终反映在锅炉的蒸发量上,如果垃圾的热值稳定,则锅炉的蒸发量与垃圾给料之间呈现正相关的关系;在给煤量和垃圾给料量一定的情况下,如果蒸发量呈现下降的趋势,意味着这段时间内垃圾的热值偏低;反之,若锅炉的蒸汽品质长期维持在较高的水平,说明垃圾的热值较高。因此,在构建CFB生活垃圾焚烧锅炉入炉垃圾热值预测模型过程中,将垃圾给料量、给煤量、炉膛床温平均温度、床温平均温度变化速率、炉膛出口烟温、炉膛出口温度变化速率、主蒸汽温度、主蒸汽流量、主蒸汽压力、一次风量、二次风量作为垃圾热值预测模型的输入变量。
按设定的时间间隔从数据库中采集锅炉的运行状态参数和操作变量的历史数据,并组成垃圾热值预测模型输入变量的训练样本矩阵X(m×n),m表示样本个数,n表示变量的个数,同时将与试验工况相对对应的垃圾热值作为模型输出变量的输出样本Y(m×1);
2)数据预处理。对X(m×n)进行粗大误差处理和随机误差处理,以摒除那些并不是反映锅炉正常运行工况的虚假信息,将锅炉停炉、压火、给料机堵塞等异常工况排除掉,为了避免预测模型的参数之间量纲和数量级的不同对模型性能造成的不良影响,训练样本输入变量均经过归一化处理后映射到[0,1]区间内,得到标准化后的输入变量的训练样本X*(m×n)和输出变量的训练样本Y*(m×1)。预处理过程采用以下步骤进行:
2.1)根据拉伊达准则,剔除训练样本X(m×n)和Y(m×1)中的野值;
2.2)剔除锅炉停炉运行工况,锅炉停炉时炉膛给煤机和给料机的开度为零,并且炉膛中温度接近常温;
2.3)剔除炉膛压火运行状况,锅炉压火时一次风机、二次风机引风机炉膛给煤机和给料机的开度为零,但是炉膛密相区的温度维持在350℃~450℃;
2.4)剔除给料机堵塞工况,给料机堵塞需要运行人员通过给料口的摄像头拍摄的画面对给料情况进行判断,给料机堵塞时,运行人员会显著地调高给料机的开度,反映在运行数据上,即给料机的开度大于35%;
2.5)数据归一化处理。按照式(1)将数据变量映射到[0 1]的区间内。
式中XJ表示第J变量所组成的向量,min()表示最小值,max()表示最大值。
3)智能算法集成建模。采用粒子群优化算法(Particle Swarm Optimization,PSO)、减法聚类算法(Subtractive Clustering,SC)和模糊自适应神经网络(AdaptiveNeuro-Fuzzy Inference System,ANFIS)算法集成建模,对训练样本进行参数寻优和学习,构建能够表征循环流化床生活垃圾焚烧锅炉入炉垃圾热值特性的预测模型。该模型中利用减法聚类算法对样本数据进行特征提取,自适应的确定初始模糊规则和模糊神经网络的初始结构参数,再结合最小二乘估计法和误差反向传播算法对模糊神经网络的参数进行学习训练。在该模型中聚类半径是影响建模性能的关键参数,因此以预测精度为目标,利用PSO算法寻找聚类半径的最优值。算法步骤如下:
3.1)初始化粒子群。以聚类半径rα作为粒子,15个粒子作为一个种群,每个粒子随机赋予[0.20.9]区间内的随机值,其中第i个粒子的位置的向量标示为ri,i=1,2,…,15;
3.2)以ri为聚类半径,进行减法聚类分析。减法聚类算法用于对建模数据样本的空间进行初始划分以及模糊规则的确定,K-均值聚类算法和模糊C-均值聚类算法均需预设聚类中心的数目,没有充分利用样本空间的蕴含的对象特征信息。而减法聚类算法是一种基于山峰函数的聚类算法,它将每个数据点作为可能的聚类中心,并根据各个数据点周围的数据点密度来计算该点作为聚类中心的可能性。
每个数据点Xi作为聚类中心的可能性Pi由式(2)来定义:
式中m表示n维输入空间中全部的数据点数,Xi=[Xi1,Xi2,...,Xin]、Xj=[Xj1,Xj2,...,Xjn]是具体的数据点,ri是一个正数,定义了该点的邻域半径,||·||符号表示欧式距离。被选为聚类中心的点具有最高的数据点密度,同时该该数据点周围的点被排除作为聚类中心的可能性。第一个聚类中心为XC1,数据点密度为Pc1。选出第一个聚类中心后,继续采用类似的方法确定下一个聚类中心,但需消除已有聚类中心的影响,修改密度指标的山峰函数如下:
其中,rβ定义了一个密度指标显著减小的邻域,为了避免出现十分接近的聚类中心,rβ=1.5ri。循环重复上述过程直到所有剩余数据点作为聚类中心的可能性低于某一阈值δ,即Pck/Pc1<δ。
3.3)ANFIS模型训练。不失一般性,假定减法聚类算法得到两个聚类中心和得到两条模糊规则:
Rule 1:IFisandisand… andisTHEN
Rule 2:IFisandisand… andisTHEN
ANFIS系统的第一层为系统的输入层,由n个节点组成,它的作用是将输入向量按原值传递到下一层。
第二层为模糊化层,由2n个节点组成,它的作用是计算各输入分量属于各语言变量值模糊集合的隶属函数该层采用高斯函数进行模糊化处理,每个节点的输出:
式中,cij和σij分别表示隶属函数的中心和宽度。
第三层共有两个节点,每个节点代表一条模糊规则,他的作用是完成模糊逻辑的“与”操作,采用product推理计算出每条规则的适应度值,即
第四层为归一化层,节点数与第三层一样,它所实现的是归一化计算,即
第五层为结论层,该层与第三层的节点数相同。其节点输出为
第六层为输出层及去模糊化层,只有一个节点,使用面积中心法进行解模糊,得到网络的最终输出为
对于模糊神经网络模型的所有参数,采用混合最小二乘法的梯度下降算法进行学习,步骤如下:
3.3.1)在固定高斯型隶属函数的中心和宽度的前提下,利用最小二乘法计算线性结论参数{r,p};
3.3.2)固定结论参数,采用误差反向传播算法对高斯函数的中心和宽度进行学习可得:
ΔS(t)=S(t+1)-S(t) (10)
式中S为参数c和σ,ηs为学习率,α为动量项,f为预测输出,f*为实际输出,E为平方误差和,n为迭代步数。利用训练样本数据,重复上述步骤,直到满足误差指标或者达到最大训练次数。
3.4)计算适应度值。利用训练得到的预测模型计算垃圾热值将垃圾热值与实际测量值y*进行比较,并以误差平方和作为粒子的适应度值MSE,适应度计算公式如下:
3.5)更新极值。以适应度值为评价指标,比较当代粒子与上一代粒子之间的适应度值大小,如果当前粒子的适应度值优于上一代,则将当前粒子的位置设置为个体极值,否则个体极值保持不变。同时获取当代所有粒子适应度值最优的粒子,并与上一代最优粒子进行比较,如果当代最优粒子的适应度值优于上一代最优粒子的适应度值,则将当代粒子的最优适应度值设置为全局最优值,否则全局最优值保持不变。
3.6)更新粒子。根据最新的个体极值和全局极值,按照(13)式和(14)式更新粒子的速度vid(t)和位置xid(t)。
vid(t+1)=ωvid(t)+c1r1(pid-xid(t))+c2r2(pgd-xid(t))>
xid(t+1)=xid(t)+vid(t+1)>
t是粒子群优化算法的寻优代数。更进一步,为了改善基本粒子群算法容易陷入局部极值和收敛速度慢的缺陷,在PSO算法的基础上引进了动态加速常数c1、c2和惯性权重ω:
其中,Tmax为最大寻优代数,ωmax为最大惯性权重,ωmin为最小惯性权重,R1、R2、R3、R4为常数。
3.7)算法停止条件算法判定。判断是否达到最大迭代次数或者到达预测精度的要求,如果没有达到则返回步骤3.2),利用更新的聚类半径继续搜索,否则退出搜索。
3.8)利用最终寻优得到的聚类半径,对样本进行聚类分析和ANFIS模型训练,得到达到训练终止条件的ANFIS模型,即垃圾热值预测模型。
4)预测热值。对指定的样本进行垃圾热值的预测,或者对当前锅炉运行工况下的垃圾热值进行实时预测。
本发明的有益效果主要表现在:利用循环流化床生活垃圾焚烧锅炉的运行机理和运行历史数据中隐含的知识,采用PSO算法、减法聚类算法和ANFIS算法集成建模的方法,构建了一种快速经济的系统和方法对入炉垃圾热值进行实时预测,避开了对垃圾成分进行离线测量的繁琐工作,为锅炉运行操作人员和电厂相关的管理人员判断锅炉的热值提供新的途径,同时能够为电厂的自动控制系统提供热值判断信号。
附图说明
图1是本发明所提出的系统的结构图。
图2是本发明所提出的上位机系统的结构图。
图3是本发明所采用ANFIS模型的系统结构图。
图4是本发明所提出的智能建模方法的流程图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
实施例1
参照图1、图2、图3、图4,本发明提供的一种循环流化床生活垃圾焚烧锅炉入炉垃圾热值实时预测系统,包括循环流化床生活垃圾焚烧锅炉,用于该锅炉运行控制的集散控制系统,数据通讯接口,数据库以及上位机。数据库通过数据通讯接口从集散控制系统中读取数据,并用于上位机的训练学习和测试,上位机通过数据通讯接口与集散控制系统进行数据交换,所述的上位机包括离线学习、验证部分和在线入炉垃圾热值预测部分。离线学习、验证部分包括:
第一信号采集模块:该模块用于采集CFB生活垃圾焚烧锅炉在焚烧指定生活垃圾时的运行工况状态参数和操作变量,并组成垃圾热值预测模型输入变量的训练样本矩阵X(m×n),m表示样本个数,n表示变量的个数;。
数据预处理模块:对X(m×n)进行粗大误差处理和随机误差处理,以摒除那些并不是反映锅炉正常运行工况的虚假信息,将锅炉停炉、压火、给料机堵塞等异常工况排除掉,为了避免预测模型的参数之间量纲和数量级的不同对模型性能造成的不良影响,训练样本输入变量均经过归一化处理后映射到[0,1]区间内,得到标准化后的训练样本X*(m×n)。预处理过程采用以下步骤进行:
1.1)根据拉伊达准则,剔除训练样本X(m×n)中的野值;
1.2)剔除锅炉停炉运行工况,锅炉停炉时炉膛给煤机和给料机的开度为零,并且炉膛中温度接近常温;
1.3)剔除炉膛压火运行状况,锅炉压火时一次风机、二次风机引风机炉膛给煤机和给料机的开度为零,但是炉膛密相区的温度维持在350℃~450℃;
1.4)剔除给料机堵塞工况,给料机堵塞需要运行人员通过给料口的摄像头拍摄的画面对给料情况进行判断,给料机堵塞时,运行人员会显著地调高给料机的开度,反映在运行数据上,即给料机的开度大于35%;
1.5)数据归一化处理。按照式(1)将数据变量映射到[0 1]的区间内。
式中XJ表示第J变量所组成的向量,min()表示最小值,max()表示最大值。
知识库模块。
将弹筒量热仪测得的垃圾热值作为垃圾热值预测模型训练样本的输出向量Y*(m×1);
智能学习模块。
智能学习模块是生活垃圾热值预测系统的核心部分,该模块采用了粒子群优化算法(Particle Swarm Optimization,PSO)、减法聚类算法(Subtractive Clustering,SC)和模糊自适应神经网络(Adaptive Neuro-Fuzzy Inference System,ANFIS)算法集成建模,对训练样本进行参数寻优和学习,构建能够表征循环流化床生活垃圾焚烧锅炉入炉垃圾热值特性的预测模型。该模型中利用减法聚类算法对样本数据进行特征提取,自适应的确定初始模糊规则和模糊神经网络的初始结构参数,再结合最小二乘估计法和误差反向传播算法对模糊神经网络的参数进行学习训练。在该模型中聚类半径是影响建模性能的关键参数,因此以预测精度为目标,利用PSO算法寻找聚类半径的最优值。算法步骤如下:
2.1)初始化粒子群。以聚类半径rα作为粒子,15个粒子作为一个种群,每个粒子随机赋予[0.2>i,i=1,2,…,15;
2.2)以ri为聚类半径,进行减法聚类分析。减法聚类算法用于对建模数据样本的空间进行初始划分以及模糊规则的确定,K-均值聚类算法和模糊C-均值聚类算法均需预设聚类中心的数目,没有充分利用样本空间的蕴含的对象特征信息。而减法聚类算法是一种基于山峰函数的聚类算法,它将每个数据点作为可能的聚类中心,并根据各个数据点周围的数据点密度来计算该点作为聚类中心的可能性。
每个数据点Xi作为聚类中心的可能性Pi由式(2)来定义:
式中m表示n维输入空间中全部的数据点数,Xi=[Xi1,Xi2,...,Xin]、Xj=[Xj1,Xj2,...,Xjn]是具体的数据点,ri是一个正数,定义了该点的邻域半径,||·||符号表示欧式距离。被选为聚类中心的点具有最高的数据点密度,同时该该数据点周围的点被排除作为聚类中心的可能性。第一个聚类中心为XC1,数据点密度为Pc1。选出第一个聚类中心后,继续采用类似的方法确定下一个聚类中心,但需消除已有聚类中心的影响,修改密度指标的山峰函数如下:
其中,rβ定义了一个密度指标显著减小的邻域,为了避免出现十分接近的聚类中心,rβ=1.5ri。循环重复上述过程直到所有剩余数据点作为聚类中心的可能性低于某一阈值δ,即Pck/Pc1<δ。
2.3)ANFIS模型训练。不失一般性,假定减法聚类算法得到两个聚类中心和得到两条模糊规则:
Rule 1:IFisandisand… andisTHEN
Rule 2:IFisandisand… andisTHEN
ANFIS系统的第一层为系统的输入层,由n个节点组成,它的作用是将输入向量按原值传递到下一层。
第二层为模糊化层,由2n个节点组成,它的作用是计算各输入分量属于各语言变量值模糊集合的隶属函数该层采用高斯函数进行模糊化处理,每个节点的输出:
式中,cij和σij分别表示隶属函数的中心和宽度。
第三层共有两个节点,每个节点代表一条模糊规则,他的作用是完成模糊逻辑的“与”操作,采用product推理计算出每条规则的适应度值,即
第四层为归一化层,节点数与第三层一样,它所实现的是归一化计算,即
第五层为结论层,该层与第三层的节点数相同。其节点输出为
第六层为输出层及去模糊化层,只有一个节点,使用面积中心法进行解模糊,得到网络的最终输出为
对于模糊神经网络模型的所有参数,采用混合最小二乘法的梯度下降算法进行学习,步骤如下:
2.3.1)在固定高斯型隶属函数的中心和宽度的前提下,利用最小二乘法计算线性结论参数{r,p};
2.3.2)固定结论参数,采用误差反向传播算法对高斯函数的中心和宽度进行学习可得:
ΔS(t)=S(t+1)-S(t) (10)
式中S为参数c和σ,ηs为学习率,α为动量项,f为预测输出,f*为实际输出,E为平方误差和,n为迭代步数。利用训练样本数据,重复上述步骤,直到满足误差指标或者达到最大训练次数。
2.4)计算适应度值。利用训练得到的预测模型计算垃圾热值将垃圾热值与实际测量值y*进行比较,并以误差平方和作为粒子的适应度值MSE,适应度计算公式如下:
2.5)更新极值。以适应度值为评价指标,比较当代粒子与上一代粒子之间的适应度值大小,如果当前粒子的适应度值优于上一代,则将当前粒子的位置设置为个体极值,否则个体极值保持不变。同时获取当代所有粒子适应度值最优的粒子,并与上一代最优粒子进行比较,如果当代最优粒子的适应度值优于上一代最优粒子的适应度值,则将当代粒子的最优适应度值设置为全局最优值,否则全局最优值保持不变。
2.6)更新粒子。根据最新的个体极值和全局极值,按照(13)式和(14)式更新粒子的速度vid(t)和位置xid(t)。
vid(t+1)=ωvid(t)+c1r1(pid-xid(t))+c2r2(pgd-xid(t))>
xid(t+1)=xid(t)+vid(t+1)>
t是粒子群优化算法的寻优代数。更进一步,为了改善基本粒子群算法容易陷入局部极值和收敛速度慢的缺陷,在PSO算法的基础上引进了动态加速常数c1、c2和惯性权重ω:
其中,Tmax为最大寻优代数,ωmax为最大惯性权重,ωmin为最小惯性权重,R1、R2、R3、R4为常数。
2.7)算法停止条件算法判定。判断是否达到最大迭代次数或者到达预测精度的要求,如果没有达到则返回步骤2.2),利用更新的聚类半径继续搜索,否则退出搜索。
2.8)利用最终寻优得到的聚类半径,对样本进行聚类分析和ANFIS模型训练,得到达到训练终止条件的ANFIS模型,即垃圾热值预测模型。
知识库更新模块。作为一种优选的方案,可以定期地更新知识库,并对入炉垃圾热值预测模型进行训练学习。
第二信号采集模块。用于从数据库中选择需要预测垃圾热值的运行工况,或者实时地采集当前锅炉的运行工况。
预测模块。该模块用于对指定的样本进行垃圾热值的预测,或者对当前锅炉运行工况下的垃圾热值进行实时预测。
结果显示模块。显示垃圾热值的预测结果,或者对垃圾热值的进行统计分析。
实施例2
参照图1、图2、图3、图4,本发明提供的一种循环流化床生活垃圾焚烧锅炉入炉垃圾热值预测方法,该方法包括以下步骤:
1)选择变量并采集样本:利用生活垃圾在循环流化床锅炉中焚烧的机理,选择垃圾热值预测模型的输入变量,选择时综合考虑以下策略:a)入炉燃料是由煤和垃圾组成的,对同一种煤,热值是比较稳定的,所以运行人员在判断入炉生活垃圾热值的高低的时候会将当前给煤量考虑进去;b)运行人员在司炉的时候,有一个重要的任务就是将床温控制在850℃~950℃之间,生活垃圾入炉后床温的变化情况是判断其热值最直接的参考依据,在其它运行参数不变的情况下,如果垃圾入炉后床温呈现出降低的趋势,要维持同样水平的床温时,投入的给煤量越多,则垃圾的含水率越高,热值越低,反之则垃圾的热值越高;c)CFB生活垃圾焚烧锅炉采用分级送风的方式,密相区处于缺氧燃烧的状态,而生活垃圾中挥发分含量占有较高的比重,通常是固定碳含量的5~7倍,同时,垃圾中水分会降低挥发分的燃烧速率,大量的挥发分在炉膛的中部和上部燃烧,产生的热烟气会提高炉膛出口的温度。如果生活垃圾进入炉膛后,在未改变其它燃烧参数的状况下,炉膛出口的温度呈现降低的趋势,则表明入炉垃圾中挥发分的含量降低,垃圾热值降低,反之则说明垃圾的热值升高;d)在考虑床温、稀相区温度和炉膛出口温度的变化趋势时,需要将这些温度的变化程度和温度水平同时考虑在内;e)锅炉在运行过程中会根据炉内流化状况、烟气含氧量和炉膛温度等参数调整一二次风量,影响生活垃圾在炉内的燃烧过程,所以要综合考虑风量变化带来的影响;f)入炉燃料的热值最终反映在锅炉的蒸发量上,如果垃圾的热值稳定,则锅炉的蒸发量与垃圾给料之间呈现正相关的关系;在给煤量和垃圾给料量一定的情况下,如果蒸发量呈现下降的趋势,意味着这段时间内垃圾的热值偏低;反之,若锅炉的蒸汽品质长期维持在较高的水平,说明垃圾的热值较高。因此,在构建CFB生活垃圾焚烧锅炉入炉垃圾热值预测模型过程中,将垃圾给料量、给煤量、炉膛床温平均温度、床温平均温度变化速率、炉膛出口烟温、炉膛出口温度变化速率、主蒸汽温度、主蒸汽流量、主蒸汽压力、一次风量、二次风量作为垃圾热值预测模型的输入变量。
按设定的时间间隔从数据库中采集锅炉的运行状态参数和操作变量的历史数据,并组成垃圾热值预测模型输入变量的训练样本矩阵X(m×n),m表示样本个数,n表示变量的个数,同时将与试验工况相对对应的垃圾热值作为模型输出变量的输出样本Y(m×1);
2)数据预处理。对X(m×n)进行粗大误差处理和随机误差处理,以摒除那些并不是反映锅炉正常运行工况的虚假信息,将锅炉停炉、压火、给料机堵塞等异常工况排除掉,为了避免预测模型的参数之间量纲和数量级的不同对模型性能造成的不良影响,训练样本输入变量均经过归一化处理后映射到[0,1]区间内,得到标准化后的输入变量的训练样本X*(m×n)和输出变量的训练样本Y*(m×1)。预处理过程采用以下步骤进行:
2.1)根据拉伊达准则,剔除训练样本X(m×n)和Y(m×1)中的野值;
2.2)剔除锅炉停炉运行工况,锅炉停炉时炉膛给煤机和给料机的开度为零,并且炉膛中温度接近常温;
2.3)剔除炉膛压火运行状况,锅炉压火时一次风机、二次风机引风机炉膛给煤机和给料机的开度为零,但是炉膛密相区的温度维持在350℃~450℃;
2.4)剔除给料机堵塞工况,给料机堵塞需要运行人员通过给料口的摄像头拍摄的画面对给料情况进行判断,给料机堵塞时,运行人员会显著地调高给料机的开度,反映在运行数据上,即给料机的开度大于35%;
2.5)数据归一化处理。按照式(1)将数据变量映射到[0 1]的区间内。
式中XJ表示第J变量所组成的向量,min()表示最小值,max()表示最大值。
3)智能算法集成建模。采用粒子群优化算法(Particle Swarm Optimization,PSO)、减法聚类算法(Subtractive Clustering,SC)和模糊自适应神经网络(AdaptiveNeuro-Fuzzy Inference System,ANFIS)算法集成建模,对训练样本进行参数寻优和学习,构建能够表征循环流化床生活垃圾焚烧锅炉入炉垃圾热值特性的预测模型。该模型中利用减法聚类算法对样本数据进行特征提取,自适应的确定初始模糊规则和模糊神经网络的初始结构参数,再结合最小二乘估计法和误差反向传播算法对模糊神经网络的参数进行学习训练。在该模型中聚类半径是影响建模性能的关键参数,因此以预测精度为目标,利用PSO算法寻找聚类半径的最优值。算法步骤如下:
3.1)初始化粒子群。以聚类半径rα作为粒子,15个粒子作为一个种群,每个粒子随机赋予[0.20.9]区间内的随机值,其中第i个粒子的位置的向量标示为ri,i=1,2,…,15;
3.2)以ri为聚类半径,进行减法聚类分析。减法聚类算法用于对建模数据样本的空间进行初始划分以及模糊规则的确定,K-均值聚类算法和模糊C-均值聚类算法均需预设聚类中心的数目,没有充分利用样本空间的蕴含的对象特征信息。而减法聚类算法是一种基于山峰函数的聚类算法,它将每个数据点作为可能的聚类中心,并根据各个数据点周围的数据点密度来计算该点作为聚类中心的可能性。
每个数据点Xi作为聚类中心的可能性Pi由式(2)来定义:
式中m表示n维输入空间中全部的数据点数,Xi=[Xi1,Xi2,...,Xin]、Xj=[Xj1,Xj2,...,Xjn]是具体的数据点,ri是一个正数,定义了该点的邻域半径,||·||符号表示欧式距离。被选为聚类中心的点具有最高的数据点密度,同时该该数据点周围的点被排除作为聚类中心的可能性。第一个聚类中心为XC1,数据点密度为Pc1。选出第一个聚类中心后,继续采用类似的方法确定下一个聚类中心,但需消除已有聚类中心的影响,修改密度指标的山峰函数如下:
其中,rβ定义了一个密度指标显著减小的邻域,为了避免出现十分接近的聚类中心,rβ=1.5ri。循环重复上述过程直到所有剩余数据点作为聚类中心的可能性低于某一阈值δ,即Pck/Pc1<δ。
3.3)ANFIS模型训练。不失一般性,假定减法聚类算法得到两个聚类中心和得到两条模糊规则:
Rule 1:IFisandisand… andisTHEN
Rule 2:IFisandisand… andisTHEN
ANFIS系统的第一层为系统的输入层,由n个节点组成,它的作用是将输入向量按原值传递到下一层。
第二层为模糊化层,由2n个节点组成,它的作用是计算各输入分量属于各语言变量值模糊集合的隶属函数该层采用高斯函数进行模糊化处理,每个节点的输出:
式中,cij和σij分别表示隶属函数的中心和宽度。
第三层共有两个节点,每个节点代表一条模糊规则,他的作用是完成模糊逻辑的“与”操作,采用product推理计算出每条规则的适应度值,即
第四层为归一化层,节点数与第三层一样,它所实现的是归一化计算,即
第五层为结论层,该层与第三层的节点数相同。其节点输出为
第六层为输出层及去模糊化层,只有一个节点,使用面积中心法进行解模糊,得到网络的最终输出为
对于模糊神经网络模型的所有参数,采用混合最小二乘法的梯度下降算法进行学习,步骤如下:
3.3.1)在固定高斯型隶属函数的中心和宽度的前提下,利用最小二乘法计算线性结论参数{r,p};
3.3.2)固定结论参数,采用误差反向传播算法对高斯函数的中心和宽度进行学习可得:
ΔS(t)=S(t+1)-S(t) (10)
式中S为参数c和σ,ηs为学习率,α为动量项,f为预测输出,f*为实际输出,E为平方误差和,n为迭代步数。利用训练样本数据,重复上述步骤,直到满足误差指标或者达到最大训练次数。
3.4)计算适应度值。利用训练得到的预测模型计算垃圾热值将垃圾热值与实际测量值y*进行比较,并以误差平方和作为粒子的适应度值MSE,适应度计算公式如下:
3.5)更新极值。以适应度值为评价指标,比较当代粒子与上一代粒子之间的适应度值大小,如果当前粒子的适应度值优于上一代,则将当前粒子的位置设置为个体极值,否则个体极值保持不变。同时获取当代所有粒子适应度值最优的粒子,并与上一代最优粒子进行比较,如果当代最优粒子的适应度值优于上一代最优粒子的适应度值,则将当代粒子的最优适应度值设置为全局最优值,否则全局最优值保持不变。
3.6)更新粒子。根据最新的个体极值和全局极值,按照(13)式和(14)式更新粒子的速度vid(t)和位置xid(t)。
vid(t+1)=ωvid(t)+c1r1(pid-xid(t))+c2r2(pgd-xid(t))>
xid(t+1)=xid(t)+vid(t+1)>
t是粒子群优化算法的寻优代数。更进一步,为了改善基本粒子群算法容易陷入局部极值和收敛速度慢的缺陷,在PSO算法的基础上引进了动态加速常数c1、c2和惯性权重ω:
其中,Tmax为最大寻优代数,ωmax为最大惯性权重,ωmin为最小惯性权重,R1、R2、R3、R4为常数。
3.7)停止条件判定。判断是否达到最大迭代次数或者到达预测精度的要求,如果没有达到则返回步骤3.2),利用更新的聚类半径继续搜索,否则退出搜索。
3.8)利用最终寻优得到的聚类半径,对样本进行聚类分析和ANFIS模型训练,得到达到训练终止条件的ANFIS模型,即垃圾热值预测模型。
4)预测热值。对指定的样本进行垃圾热值的预测,或者对当前锅炉运行工况下的垃圾热值进行实时预测。
本发明所提出的循环流化床锅炉入炉垃圾热值预测系统及方法,已通过上述具体实施步骤进行了描述,相关技术人员明显能在不脱离本发明内容、精神和范围内对本文所述的装置和操作方法进行改动或适当变更与组合,来实现本发明技术。特别需要指出的是,所有相类似的替换和改动对本领域的技术人员是显而易见的,它们都会被视为包括在本发明精神、范围和内容中。
机译: 热值低,生活垃圾,工业垃圾非常湿的家用垃圾炉焚烧炉
机译: 循环流化床炉,配备有循环流化床炉的处理系统以及运行循环流化床炉的方法
机译: 循环流化床炉,配备有循环流化床炉的处理系统以及运行循环流化床炉的方法