首页> 中国专利> 类牡蛎壳的仿生多层强韧化薄膜

类牡蛎壳的仿生多层强韧化薄膜

摘要

本发明公开了一种类牡蛎壳的仿生多层强韧化薄膜,该薄膜具有多层复合结构,采用非晶金属层和纳米复合结构层交互叠加的方式形成。纳米复合结构层是指具有“非晶相包覆纳米晶相的复合结构”的单层,非晶金属层相当于牡蛎壳的有机质层,纳米复合结构层相当于牡蛎壳的方解石板条层。该薄膜采用电弧离子镀复合磁控溅射技术制备得到,制备的薄膜具有类牡蛎壳的多层复合结构,结构致密,界面层清晰,通过控制薄膜单层的厚度,实现薄膜高硬度、高强度、高韧性、低摩擦和优异的耐磨损性能,并具有一定的高温自润滑性能。

著录项

  • 公开/公告号CN105862002A

    专利类型发明专利

  • 公开/公告日2016-08-17

    原文格式PDF

  • 申请/专利权人 中国科学院兰州化学物理研究所;

    申请/专利号CN201610398362.X

  • 发明设计人 吴贵智;史鑫;鲁志斌;张广安;

    申请日2016-06-07

  • 分类号

  • 代理机构兰州中科华西专利代理有限公司;

  • 代理人周瑞华

  • 地址 730000 甘肃省兰州市城关区天水中路18号

  • 入库时间 2023-06-19 00:15:09

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-11-30

    授权

    授权

  • 2016-09-14

    实质审查的生效 IPC(主分类):C23C14/35 申请日:20160607

    实质审查的生效

  • 2016-08-17

    公开

    公开

说明书

技术领域

本发明属于仿生陶瓷薄膜材料技术领域,涉及一种类牡蛎壳的仿生多层强韧化薄膜,具体说是采用电弧离子镀复合磁控溅射技术在基体表面获得类牡蛎壳结构的仿生多层强韧化薄膜,该薄膜具有高硬度、高韧性、低摩擦、耐磨性好的特点,并具有高温自润滑性能。

背景技术

硬质陶瓷薄膜如TiN、TiC、TiSiN、TiAlN、TiAlCN、CrAlN、CrSiN、DLC是一类高硬度、高耐磨性的材料,主要应用于对力学性能、摩擦学性能、耐腐蚀性能及耐高温性能等有很高要求的领域,如工模具、汽车发动机、船舶、航空航天等领域。但实际应用中,上述硬质陶瓷薄膜材料容易出现应力崩裂、脆性剥落等失效行为,严重制约了其使用期的稳定性及寿命的提高。研究发现薄膜脆性大、韧性低是上述失效行为发生的主因。因此,优化薄膜材料的韧性,避免其脆性失效是现阶段硬质薄膜材料的研究热点之一。

提高薄膜韧性的方法之一是在上述硬质陶瓷薄膜中添加韧性相或提高金属元素的含量。如在TiSiN薄膜中添加石墨相形成TiSiCN薄膜,使其结构具有非晶包覆纳米晶的复合结构,薄膜中的碳元素以非晶碳的形式存在,能起到降低应力、避免裂纹快速萌生及减缓裂纹扩张的作用,因此薄膜表现出了较好的韧性特征。并且由于非晶碳相的润滑特性,薄膜表现出了优异的减摩效果。但是韧性相的添加又使薄膜的硬度大幅度降低,因此其耐磨性能下降,综合使役性能未能提高。另外,上述薄膜组成元素多,在制备过程中不易控制沉积参数以达到所需的非晶包覆纳米晶的复合结构,并且其工艺稳定性无法满足批量生产要求,因此这种类型的薄膜目前还只存在于实验室研究中,并未大面积推广进入工业化生产。

多层膜技术是另一种提高薄膜韧性的方法。一类多层膜是金属/氮化物陶瓷多层结构薄膜,纯金属具有良好的塑性,氮化物陶瓷具有高硬度,将两者结合能有效提高薄膜韧性。金属与氮化物交替形成层状结构,塑性好的金属层能缓和高硬度层的残余应力,并且在对抗剪切应力时金属层能塑性滑移,表现出了较好的韧性特征。如TiN/Ni纳米多层薄膜,硬度可达30GPa,韧性和耐磨性优于TiN单层薄膜(一种氮化钛/镍纳米多层薄膜的制备方法,贺春林,等,中国发明专利,申请公布号CN102330062A)。另一类多层膜是非晶/纳米晶多层结构薄膜。薄膜呈现非晶层和纳米晶层交替叠加的多层结构,力学性能可控,具有较好的韧性。如ZrCuNiAlSi非晶层/纳米晶W多层薄膜,由于ZrCuNiAlSi为具有非晶结构的金属玻璃,内部无晶界和晶体结构缺陷,因此具有良好的弹性极限、耐腐蚀、耐磨损性能(一种制备非晶/纳米晶多层结构薄膜的方法,王飞,等,中国发明专利,申请公布号CN102925869A)。但由于此类多层薄膜均为金属元素构成,硬度较氮化物陶瓷低很多,因此耐磨性能差,只能应用于对耐磨性要求不高的信息器件、传感器件等领域。

一般来说,材料的硬度和塑韧性成反比关系,两者存在无法同时提高的矛盾。不论是纳米复合结构的薄膜还是多层薄膜,至今还未能解决上述矛盾。因此,如何设计制备出同时具有高硬度、高韧性,并且具有自润滑、耐磨性好等特点的薄膜材料是薄膜科技的重要方向及难题之一。

自然界中的生物具有许多匪夷所思的特性,如荷叶表面的超疏水特性、蜘蛛丝的高抗拉强度特性、贝壳的抗冲击特性等。基于对以上生物特性的研究,人类利用生物仿生技术发明了具有防腐、防污功能的超疏水材料,具有极高抗拉强度的碳纤维材料等。

牡蛎壳作为一种生物护甲材料,同时兼具高强度、高韧性的特点,具有优良的抗冲击防护性能。2014年美国自然材料杂志报道,牡蛎壳由一层厚约300nm的方解石板条层及一层厚约2nm的有机质层相互叠加而成,高硬度的方解石板条层提供了较好的硬度、强度性能,有机质层能有效阻止裂纹沿断面的整体穿透,多层结构及有机质层的共同作用可增加其能量耗散效率,通过一系列的纳米非弹性变形过程耗散了大量的能量,从而使牡蛎壳具有极高的韧性、优良的承载性和抗冲击性能。

基于以上高硬度、高韧性、抗磨损与低摩擦的类牡蛎壳结构的仿生多层强韧化薄膜设计理念,目前还未见相关报道。

发明内容

本发明的目的在于提供一种类牡蛎壳的仿生多层强韧化薄膜。

本发明所述仿生多层强韧化薄膜材料在结构上与传统的纳米复合薄膜和多层薄膜结构有很大不同。传统的多层薄膜每一层或为晶体或为非晶体结构,不能形成规整的纳米复合结构,因此不具有纳米复合结构优异的综合力学性能;而传统的纳米复合薄膜为单层薄膜,在薄膜整体上表现出纳米复合结构,虽然力学性能优异,但综合性能较多层薄膜单一。而本发明所述仿生多层强韧化薄膜材料是一种综合了纳米复合结构与多层薄膜结构,类似牡蛎壳结构的新式仿生薄膜材料。

类牡蛎壳的仿生多层强韧化薄膜,其特征在于该薄膜为非晶金属层和纳米复合结构层交互叠加形成的具有多层复合结构的薄膜,所述纳米复合结构层为具有“非晶相包覆纳米晶相的复合结构”的单层;该薄膜通过以下方法制备得到:

1)将基体超声清洗后用干燥氮气吹干,夹持在镀膜设备转架台上,关闭真空腔炉门,抽真空至5×10-3Pa,开启转架台,转架台转速为6~15转/分钟;

2)真空腔内通入氩气,真空度维持在1Pa,偏压为-800V,清洗时间为15~30min;之后开启电弧靶,进一步进行离子轰击清洗,偏压维持在-800V,持续5~10min,轰击清洗完成后关闭电弧靶;

3)调节氩气流量,使真空度维持在0.6Pa,开启电弧靶,沉积金属粘结层,偏压为-300V,沉积时间为5~10min;

4)调节偏压至-100V,开启磁控溅射4个阴极靶沉积纳米复合层;工作气体为Ar和N2,沉积过程中,沉积室真空度为0.6Pa,电弧靶持续开启,基体在镀膜过程中随转架台做圆周运动;由于电弧靶具有较高的能量,基体在转至电弧靶位时,将因为较高的溅射粒子能量而形成非晶态金属层;当基体转至磁控靶位时,由于粒子能量较低,因此晶体有形核及生长的时间,形成纳米复合结构层;合理控制转架台转速即可交替沉积具有不同厚度的非晶层和纳米复合结构层,最表层为纳米复合结构层;调节镀膜时间从而得到所需厚度的类牡蛎壳的仿生多层强韧化薄膜。

所述薄膜的总厚度为0.5µm~30.0µm;非晶金属层对应于牡蛎壳的有机质层,厚度为2.0nm~10.0nm;纳米复合结构层对应于牡蛎壳的方解石板条层,厚度为8.0nm~100.0nm。

所述电弧靶为单列电弧靶、单一柱形弧靶或单一平面弧靶,靶材为Ti靶、Cr靶、TiAl靶、CrAl靶、Mo靶或V靶。

所述阴极靶的靶材为Ti靶、Cr靶、Al靶、C靶、Si靶、Mo靶、V靶、TiAl靶、AlSi靶、B4C靶或WC靶。

所述基体为钢、钛合金、铝合金、玻璃、氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、单晶硅、聚醚醚酮或橡胶。

本发明所述的类牡蛎壳的仿生多层强韧化薄膜具有牡蛎壳层状结构的特点,具有高硬度、高强度、高韧性、低摩擦和优异的耐磨损性能,同时具有一定的高温自润滑性能,并且容易通过控制膜层的厚度及层数获得性能可调的多层膜。本发明所述薄膜采用电弧离子镀复合磁控溅射技术制备得到,结构致密,界面层清晰。

附图说明

图1为本发明所述类牡蛎壳的仿生多层强韧化薄膜截面的结构示意图。

具体实施方式

实施例1

1)将高速钢基片超声清洗后用干燥氮气吹干,夹持在镀膜设备转架台上,关闭真空腔炉门,抽真空至5×10-3Pa,开启转架台,转架台转速为6转/分钟;

2)真空腔内通入氩气,真空度维持在1Pa,偏压为-800V,清洗时间为15~30min;之后开启电弧Ti靶,进一步进行离子轰击清洗,偏压维持在-800V,持续5~10min,轰击清洗完成后关闭电弧Ti靶;

3)调节氩气流量,使真空度维持在0.6Pa,开启电弧Ti靶,沉积Ti粘结层,偏压为-300V,沉积时间为5min;

4)调节偏压至-100V,开启磁控溅射Al靶、C靶(两个)、Si靶沉积纳米复合层;工作气体为Ar气及N2气,沉积室真空度为0.6Pa,电弧Ti靶持续开启,基体在镀膜过程中随转架台做圆周运动;Al靶及Si靶电流分别控制为3.0A及1.2A,石墨靶电流控制为3.0A;

5)沉积时间为120分钟,得到类牡蛎壳的仿生多层强韧化薄膜;薄膜结构为非晶Ti层与纳米复合结构层(非晶Si3N4及非晶C包覆纳米晶AlN)的复合结构。

实施例2

1)将不锈钢基片超声清洗后用干燥氮气吹干,夹持在镀膜设备转架台上,关闭真空腔炉门,抽真空至5×10-3Pa,开启转架台,转架台转速为15转/分钟;

2)真空腔内通入氩气,真空度维持在1Pa,偏压为-800V,清洗时间为15~30min;之后开启电弧Ti靶,进一步进行离子轰击清洗,偏压维持在-800V,持续5~10min,轰击清洗完成后关闭电弧Ti靶;

3)调节氩气流量,使真空度维持在0.6Pa,开启电弧Ti靶,沉积Ti粘结层,偏压为-300V,沉积时间为5min;

4)调节偏压至-100V,开启磁控溅射Al靶、C靶(两个)、Si靶沉积纳米复合层;工作气体为Ar气及N2气,沉积室真空度为0.6Pa,电弧Ti靶持续开启,基体在镀膜过程中随转架台做圆周运动;Al靶及Si靶电流分别控制为3.0A及1.2A,石墨靶电流控制为3.0A;

5)沉积时间为120分钟,得到类牡蛎壳的仿生多层强韧化薄膜;薄膜结构为非晶Ti层与纳米复合结构层(非晶Si3N4及非晶C包覆纳米晶AlN)的复合结构。

实施例3

1)将聚醚醚酮基片超声清洗后用干燥氮气吹干,夹持在镀膜设备转架台上,关闭真空腔炉门,抽真空至5×10-3Pa,开启转架台,转架台转速为6转/分钟;

2)真空腔内通入氩气,真空度维持在1Pa,偏压为-800V,清洗时间为15~30min;之后开启电弧Cr靶,进一步进行离子轰击清洗,偏压维持在-800V,持续5~10min,轰击清洗完成后关闭电弧Cr靶;

3)调节氩气流量,使真空度维持在0.6Pa,开启电弧Cr靶,沉积Cr粘结层,偏压为-300V,沉积时间为5min;

4)调节偏压至-100V,开启磁控溅射Al靶、C靶(两个)、Si靶沉积纳米复合层;工作气体为Ar气及N2气,沉积室真空度为0.6Pa,电弧Cr靶持续开启,基体在镀膜过程中随转架台做圆周运动;Al靶及Si靶电流分别控制为5.0A及1.2A,石墨靶电流控制为5.0A;

5)沉积时间为90分钟,得到类牡蛎壳的仿生多层强韧化薄膜;薄膜结构为非晶Cr层与纳米复合结构层(非晶Si3N4及非晶C包覆纳米晶AlN)的多层复合结构。

实施例4

1)将氮化硅基片超声清洗后用干燥氮气吹干,夹持在镀膜设备转架台上,关闭真空腔炉门,抽真空至5×10-3Pa,开启转架台,转架台转速为6转/分钟;

2)真空腔内通入氩气,真空度维持在1Pa,偏压为-800V,清洗时间为15~30min;之后开启电弧Cr靶,进一步进行离子轰击清洗,偏压维持在-800V,持续5~10min,轰击清洗完成后关闭电弧Cr靶;

3)调节氩气流量,使真空度维持在0.6Pa,开启电弧Cr靶,沉积Cr粘结层,偏压为-300V,沉积时间为5min;

4)调节偏压至-100V,开启磁控溅射TiAl靶、C靶(两个)、Si靶沉积纳米复合层;工作气体为Ar气及N2气,沉积室真空度为0.6Pa,电弧Cr靶持续开启,基体在镀膜过程中随转架台做圆周运动;TiAl靶及Si靶电流分别控制为5.0A及1.2A,石墨靶电流控制为5.0A;

5)沉积时间为90分钟,得到类牡蛎壳的仿生多层强韧化薄膜;薄膜结构为非晶Cr层与纳米复合结构层(非晶Si3N4及非晶C包覆纳米晶TiAlN)的多层复合结构。

实施例5

1)将单晶硅基片超声清洗后用干燥氮气吹干,夹持在镀膜设备转架台上,关闭真空腔炉门,抽真空至5×10-3Pa,开启转架台,转架台转速为6转/分钟;

2)真空腔内通入氩气,真空度维持在1Pa,偏压为-800V,清洗时间为15~30min;之后开启电弧Cr靶,进一步进行离子轰击清洗,偏压维持在-800V,持续5~10min,轰击清洗完成后关闭电弧Cr靶;

3)调节氩气流量,使真空度维持在0.6Pa,开启电弧Cr靶,沉积Cr粘结层,偏压为-300V,沉积时间为5min;

4)调节偏压至-100V,开启磁控溅射V靶、C靶(两个)、Si靶沉积纳米复合层;工作气体为Ar气及N2气,沉积室真空度为0.6Pa,电弧Cr靶持续开启,基体在镀膜过程中随转架台做圆周运动;V靶及Si靶电流分别控制为5.0A及1.2A,石墨靶电流控制为5.0A;

5)沉积时间为90分钟,得到类牡蛎壳的仿生多层强韧化薄膜;薄膜结构为非晶Cr层与纳米复合结构层(非晶Si3N4及非晶C包覆纳米晶VN)的多层复合结构。

实施例6

1)将石英玻璃基片超声清洗后用干燥氮气吹干,夹持在镀膜设备转架台上,关闭真空腔炉门,抽真空至5×10-3Pa,开启转架台,转架台转速为6转/分钟;

2)真空腔内通入氩气,真空度维持在1Pa,偏压为-800V,清洗时间为15~30min;之后开启电弧Cr靶,进一步进行离子轰击清洗,偏压维持在-800V,持续5~10min,轰击清洗完成后关闭电弧Cr靶;

3)调节氩气流量,使真空度维持在0.6Pa,开启电弧Cr靶,沉积Cr粘结层,偏压为-300V,沉积时间为5min;

4)调节偏压至-100V,开启磁控溅射Cr靶、C靶(两个)、Si靶沉积纳米复合层;工作气体为Ar气及N2气,沉积室真空度为0.6Pa,电弧Cr靶持续开启,基体在镀膜过程中随转架台做圆周运动;Cr靶及Si靶电流分别控制为5.0A及1.2A,石墨靶电流控制为5.0A;

5)沉积时间为90分钟,得到类牡蛎壳的仿生多层强韧化薄膜;薄膜结构为非晶Cr层与纳米复合结构层(非晶Si3N4及非晶C包覆纳米晶CrN)的多层复合结构。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号