法律状态公告日
法律状态信息
法律状态
2023-06-09
专利权的转移 IPC(主分类):G06F30/20 专利号:ZL2016100919956 登记生效日:20230530 变更事项:专利权人 变更前权利人:淮阴师范学院 变更后权利人:江苏瑞特电子设备有限公司 变更事项:地址 变更前权利人:223300 江苏省淮安市淮阴区长江西路111号 变更后权利人:223100 江苏省淮安市洪泽县工业园区东一道十六号 变更事项:专利权人 变更前权利人:江苏瑞特电子设备有限公司 变更后权利人:
专利申请权、专利权的转移
2020-07-17
授权
授权
2017-11-10
实质审查的生效 IPC(主分类):G06F19/00 申请日:20160218
实质审查的生效
2016-05-18
公开
公开
技术领域
本发明涉及光伏组件MPPT算法技术领域,具体涉及一种基于参数辨识的光伏组件MPPT算法。
背景技术
随着传统能源的紧缺及环境污染问题日益严峻,世界各国纷纷努力采用清洁、无污染的可再生能源替代传统化石能源,希望达到保护环境和生态的目的。太阳能无疑是符合可持续发展战略的理想能源,它具有清洁性、可再生性、安全性以及使用灵活性等优点。因此,光伏发电有巨大的经济效益和广阔的发展前景,是各国着力发展的可再生能源发电技术之一。
在光伏发电应用过程中,首要问题是提高光伏组件的发电效率,即如何使光伏发电系统在任意工况下都输出最大功率,因此迫切需要实现光伏组件的MPPT问题。
常用的光伏组件MPPT算法主要包括:恒定电压法、扰动观测法、电导增量法以及开路电压/短路电流系数法等。上述方法均基于采样数据的直接控制,因而目标明确、简单易实现,已得到广泛应用;然而上述方法不可避免存在动态响应慢、稳态精度差的缺陷。
发明内容
本发明要解决的技术问题是提供一种基于参数辨识的光伏组件MPPT算法,本发明有效解决了传统常用的光伏组件MPPT算法存在动态响应慢、稳态精度差的问题。
本发明通过以下技术方案实现:
一种基于参数辨识的光伏组件MPPT算法,其特征在于:包括如下步骤,
步骤1:实时获取当前环境工况,以及对应的光伏组件I-V输出特性曲线;
步骤2:根据当前I-V输出特性曲线采样点,利用IAFSA对光伏组件内部等效参数进行参数辨识;
步骤3:通过Newton迭代法对光伏组件输出功率进行显式化求解,获取当前工况下最大输出功率;
步骤4:采用自适应PI控制算法实现光伏组件MPPT;
步骤5:若输出功率的变化值超过预设值时,重启上述Newton迭代求解过程,以实现新一轮MPP寻优过程。
本发明进一步技术改进方案是:
所述的步骤1中相关数据的获取过程如下:通过太阳总辐射表TBQ-2和温度传感器PT100对当前光照强度S和环境温度T分别进行测量,可编程直流电子负载用于实现对光伏组件I-V输出特性曲线进行N点扫描,根据参数辨识精度要求选取N值。
本发明进一步技术改进方案是:
所述的步骤2中光伏组件内部等效参数的辨识过程如下:光伏组件参数辨识可归纳为一个优化问题,其基本思想是通过最小化目标函数以求取参数最优值,本过程选取的目标函数为均方根误差(RMSE)为:
式中,θ=(Rs、Rsh、Iph、ISD、n)为待辨识参数,fi(V,I,θ)是第i组实测值和仿真模型输出的差值;
针对上述式(1),采用IAFSA的具体实施步骤如下:
步骤1:对IAFSA的相关参数进行初始化操作,种群数目N、随机初始位置、最大迭代次数Maxgen、感知范围[Visualstart,Visualend]、步长范围[Stepstart,Stepend]、拥挤度因子δ、最大试探次数Try_number和NM法间隔数K等参数;
步骤2:求取各人工鱼的适应度值,并记录全局最优人工鱼状态;
步骤3:对AFSA算法参数进行自适应调整;
步骤4:对各人工鱼的行为进行评价,选择人工鱼最合适的行为进行动作;
步骤5:执行相应的行为后,对人工鱼的位置信息和全局最优人工鱼状态进行更新,给公告牌赋最优值,同时,采用繁殖行为,淘汰适应度值较差的个体;
步骤6:迁徙行为判断,若满足迁徙概率Pe,则执行迁徙行为,并更新公告牌状态;否则,直接转到步骤207执行;
步骤7:如果满足tmodK=0,执行NM法,借助K-均值聚类法,确定聚类中心人工鱼;对每个类中心个体执行NM搜索,计算其适应度值并更新公告牌;
步骤8:对全局极值人工鱼个体执行NM法搜索,将最优值赋给公告牌;
步骤9:判断终止条件,若满足终止条件,则输出最优值,算法结束;否则,继续迭代执行步骤202~步骤208,直至算法终止条件被满足。
本发明进一步技术改进方案是:
所述的步骤3中MPP显式化的求解过程如下:根据电流方程的显式解,得光伏组件的输出功率为:
在MPP处,根据
式中,
式(3)是仅含有Im的方程,若已知当前工况下各内部等效参数值,即可求解出Im值,进而将其代入电压的显式表达式,可得:
已知光伏组件的内部等效参数并结合当前工况,通过Newton迭代法可以准确获知当前Pm值。
本发明进一步技术改进方案是:
所述的步骤5中重启Newton迭代算法的判定过程如下:
当检测输出功率的变化值超过设定阈值ΔP时,即可重启Newton迭代算法,重复步骤3、步骤4,根据不同光伏组件的额定容量设定ΔP值,其工作原理:本发明结合参数辨识和自适应PI控制算法进行光伏组件MPPT控制,其目的旨在使光伏发电系统能够快速、准确地稳定在MPP处,有效解决现有光伏组件MPPT算法存在的诸多缺陷。
本发明与现有技术相比,具有以下明显优点:
本发明建立了一种基于参数辨识的光伏组件MPPT算法,与现有MPPT算法相比,本发明方法充分考虑了光伏组件的运行工况、参数辨识算法精度高,结合定功率差重启迭代算法可使得光伏组件始终稳定运行在MPP处,将参数辨识和自适应PI控制算法相结合,不仅可以实现全局MPP的搜索过程,避免陷入局部最优;而且当功率变化值较小时,也能实现光伏组件MPP的局部微调,提高了动态响应的速度。
附图说明
图1为本发明为本发明的单二极管等效电路模型;
图2为本发明为本发明的改进人工鱼群算法(IAFSA)的详细流程图;
图3为本发明为本发明的具体示意图
具体实施方式
下面结合附图1、2、3,对本发明进行详细说明:
基于可编程直流电子负载对光伏组件进行数据实测,以TSM-250PC05A型光伏组件为例,为便于求解,可选取N=32。在实际运行工况下,通过太阳总辐射表TBQ-2和温度传感器PT100对当前光照强度S和环境温度T分别进行测量。
通常,光伏电池单体的等效电路模型如图1所示,模型参数主要包括:光生电流(Iph)、二极管反向饱和电流(ISD)、二极管理想品质因素(n)以及等效串并联电阻(Rs、Rsh)。
在实际应用中,一块光伏组件由Ns=60个光伏电池串联而成,则光伏组件的基尔霍夫电流定律(KCL)等效电路方程为:
式中:q为电子电荷量(1.602×10-19C);k为玻尔兹曼常数(1.381×10-23J/K);T为热力学温度(常温近似为300K)。
由式(1)可知,该方程中含有5个未知参数,分别为:Iph、ISD、n、Rs和Rsh。光伏组件数学模型是一个隐式且非线性的超越方程,直接函数求解较困难。本发明先通过LambertW函数将其进行显式化处理,用于降低原数学模型中参数求解的难度;进而提出通过改进人工鱼群算法(IAFSA)来辨识模型参数。
由此可得光伏组件的电流显式表达式:
式中,
在进行IAFSA辨识该模型参数之前,需建立准确的目标函数,对式(2)作如下变形:
式中,V、I是I-V特性曲线中电压、电流采样值。
光伏组件参数辨识可归纳为一个优化问题,其基本思想是通过最小化目标函数以求取参数最优值。本发明选取的目标函数为均方根误差(RMSE)为:
式中,θ=(Rs、Rsh、Iph、ISD、n)为待辨识参数,fi(V,I,θ)是第i组实测值和仿真模型输出的差值。
Nelder-Mead方法(NM法)也称下山单纯形法,不同于线性规划的单纯形法,它适用于求n元函数f(x1,x2,…,xn)的无约束最小值。与其它智能优化算法相类似,当AFSA中存在人工鱼处于随机移动状态或在局部极值点出现人工鱼群聚集严重时,导致算法收敛速度减慢,进而影响到最终收敛精度。
因此,针对AFSA运行后期收敛速度放缓、精度降低等问题,在算法运行过程中动态调整相关参数,同时引入繁殖行为、迁徙行为和NM法来提高算法的整体寻优性能,较好地平衡改进算法的全局和局部搜索能力,进一步加快运算速度。
算法迭代运行前期,较大的Visual和Step可增强算法的全局搜索能力和收敛速度;迭代运行后期,算法逐步演化为精细化搜索过程,在最优解邻域范围内进行精细搜索。基于此,可按式(5)对人工鱼感知范围Visual和移动步长Step进行动态调整:
式中,Visualstart、Visualend分别表示Visual的初值和终值;Stepstart、Stepend分别表示Step的初值和终值;t为当前迭代次数,Maxgen为最大迭代次数。
在IAFSA的迭代过程中,在固定迭代间隔步数时引入K-均值聚类方法对人工鱼群进行分类,并对聚类中心个体执行NM法精确搜索。此外,为加快该算法整体的收敛速度和解的质量,对每次迭代过程公告牌中全局极值点均执行一次NM法搜索。基于此,IAFSA较好地利用AFSA所得的优化结果,同时适度降低NM法计算量,IAFSA的具体流程图如图2所示。
综上所述,本发明所提IAFSA的具体实施步骤如下:
Step1、对参数进行初始化操作,种群数目N、随机初始位置、最大迭代次数Maxgen、感知范围[Visualstart,Visualend]、步长范围[Stepstart,Stepend]、拥挤度因子δ、最大试探次数Try_number和NM法间隔数K等参数。
Step2、求取各人工鱼的适应度值,并记录全局最优人工鱼状态。
Step3、对AFSA算法参数进行自适应调整。
Step4、对各人工鱼的行为进行评价,选择人工鱼最合适的行为进行动作。
Step5、执行相应的行为后,对人工鱼的位置信息和全局最优人工鱼状态进行更新,给公告牌赋最优值。同时,采用繁殖行为,淘汰适应度值较差的个体。
Step6、迁徙行为判断,若满足迁徙概率Pe,则执行迁徙行为,并更新公告牌状态;否则,直接转到Step7执行。
Step7、如果满足tmodK=0,执行NM法。借助K-均值聚类法,确定聚类中心人工鱼;对每个类中心个体执行NM搜索,计算其适应度值并更新公告牌。
Step8、对全局极值人工鱼个体执行NM法搜索,将最优值赋给公告牌。
Step9、判断终止条件,若满足终止条件,则输出最优值,算法结束;否则,继续迭代执行Step2~Step8,直至算法终止条件被满足。
根据电流方程的显式解,得光伏组件的输出功率为:
在MPP处,根据
式中,
式(7)是仅含有Im的方程,若已知当前工况下各内部等效参数值,即可求解出Im值。进而将其代入电压的显式表达式,可得:
已知光伏组件的内部等效参数并结合当前工况,通过Newton迭代法可以准确获知当前Pm值。
以当前Pm值为基准,采用自适应PI控制算法实现光伏组件MPPT。若外界工况变化缓慢,自适应PI控制算法可以实现光伏组件MPP的局部微调;若外界工况发生突变,导致输出功率的变化值超过预设值,本发明实施例选取TSM-250PC05A型光伏组件,此处设定功率差ΔP=25W,需重启Newton迭代求解过程,以实现新一轮MPP寻优过程,本发明的具体示意图如图3所示。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质,在本发明的精神和原则之内,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。
机译: 基于光伏组件最佳电压位置的实时MPPT技术的开发
机译: 基于光伏发电系统电阻匹配的MPPT控制方法
机译: 基于新型MPPT的太阳能光伏系统的五级电池充电控制器