首页> 中国专利> 一种基于微生物燃料电池的对硝基苯酚浓度检测系统和方法

一种基于微生物燃料电池的对硝基苯酚浓度检测系统和方法

摘要

本发明公开了一种基于微生物燃料电池的对硝基苯酚浓度检测系统和方法,属于微生物技术领域,阳极室、阴极室中均设有磁力搅拌装置,阳极室、阴极室的中间设有质子交换膜,阴极室和阳极室的外侧设有阴极排液装置,阳极室内设有阳极电极,阳极电极与放大芯片的负极连接,阴极室内设有阴极电极,阴极电极与放大芯片的正极连接,放大检测电压。它可以同时实现在线监测和原位修复两个功能,与传统检测方式和污染物处理手段相比具有操作简单、设备成本低并且运行稳定的特点,这极大的优化了数据最终处理以及展现的形式,降低了污染物的处理成本,可以实现多地多设备同时远程监控,能够对数据进行汇总,方便以后大数据分析。

著录项

  • 公开/公告号CN105552466A

    专利类型发明专利

  • 公开/公告日2016-05-04

    原文格式PDF

  • 申请/专利权人 兰州大学;

    申请/专利号CN201510761833.4

  • 申请日2015-11-05

  • 分类号H01M10/48(20060101);H01M8/16(20060101);

  • 代理机构

  • 代理人

  • 地址 730000 甘肃省兰州市城关区天水南路222号

  • 入库时间 2023-12-18 15:46:18

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-01-05

    授权

    授权

  • 2016-06-01

    实质审查的生效 IPC(主分类):H01M10/48 申请日:20151105

    实质审查的生效

  • 2016-05-04

    公开

    公开

说明书

技术领域:

本发明涉及微生物技术领域,具体涉及一种基于微生物燃料电池的对硝基苯酚浓度检测系统和方法。

背景技术:

对硝基苯酚(p-nitrophenol,PNP)作为化工、农药、染料等行业工业废水中的主要污染物之一,具有毒性大、难于生物降解等特点。为了确保人体健康,水中PNP浓度应低于70μg/L,美国各洲规定,饮用水中PNP浓度不得高于20μg/L。因此,准确检测出水中PNP含量具有重要意义。目前,对硝基苯酚检测最常见的方法就是紫外可见分光光度法。此种方法需要提前对所有的样品进行pH调节,并使用紫外可见扫描光谱仪等贵重精密仪器进行检测,不仅操作繁琐、成本高昂,不便携带,而且难以实时监测。另一方面,目前的PNP的降解工艺也存在巨大挑战,现有技术很难做到在检测污染物的同时对其进行降解。

微生物燃料电池,是微生物技术与电池技术相结合的产物,它是一种通过产电菌代谢可生物降解的有机物,并将代谢产生的电子传递到外电路进而输出电能的装置。目前的研究表明,微生物燃料电池的电压(电流)与底物的浓度在一定的范围内存在对应关系,因此微生物燃料电池能用于某些底物含量的测定。然而,对于微生物燃料电池运行状态的实时监控仍是尚未解决的难题。目前,人们对于微生物燃料电池的工作水平与电池中底物浓度的测量依然依靠大型外置设备,不仅费时费力,而且不利于推广应用。

此外,近年来,人们对于污染物监测装置的小型化、廉价化,以及对于监测数据远程统筹分析的需要也愈发迫切。而在检测污染物的同时能够低成本的降解污染物则更是具有重要意义。

发明内容:

针对上述问题,本发明要解决的技术问题是提供一种能够准确自动化的监测当前有机污染物浓度、集中送出数据便于后续分析,更降低了污染物的检测和监测成本的基于微生物燃料电池的对硝基苯酚浓度检测系统和方法。

本发明所提供的一种电化学活性细菌,它来源于黄河兰州段沉积物,采用稀释平板涂布法富集,分离纯化得到,经鉴定,该菌是蒙氏假单胞菌(Pseudomonasmonteilii)LZU-3,由中国典型培养物保藏中心(简称CCTCC)保藏,保藏号为:CCTCCNO:M2015454,保藏日期为2015年7月15日,保藏地址为中国,武汉,武汉大学。该菌在LB培养基上的菌落为白色,圆形,表面光滑,湿润粘稠。扫描电镜下观察该菌的形态为椭圆形。菌株LZU-3的全长16SrDNA序列在GenBank中的登录号为KP056323。

本发明的一种基于微生物燃料电池的对硝基苯酚浓度检测系统和方法,它的硬件装置包含恒温装置、阴极电极(碳毡/碳刷)、阳极电极(碳毡/碳刷)、磁力搅拌装置、阳极室、阴极室(可更换培养基实现其他工业废水污染物的检测)、质子交换膜、自动采样/混样装置、阳极加样孔、阴极加样孔、阳极排液装置、阴极排液装置、放大芯片、外部供电、接地、AD转换、MCU、输入输出设备;阳极室、阴极室中均设有磁力搅拌装置,阳极室、阴极室的中间设有质子交换膜,质子交换膜的两侧均设有恒温装置,阳极室的外侧设有阳极排液装置,阴极室的外侧设有阴极排液装置,阳极室内设有阳极电极(碳毡/碳刷),阳极电极(碳毡/碳刷)与放大芯片的负极连接,阴极室内设有阴极电极(碳毡/碳刷),阴极电极(碳毡/碳刷)与放大芯片的正极连接,放大芯片的一侧与外部供电连接,放大芯片的另一侧为接地,放大芯片与AD转换连接,AD转换与MCU连接,MCU与输入输出设备相互连接,MCU的一端与自动采样/混样装置连接,自动采样/混样装置与阳极加样孔连接,MCU的另一端与阳极排液装置连接。

本发明提供的一整套解决方案中的用于阳极液的改进的培养基配方为:K2HPO4·3H2O0.85g/L、KH2PO40.2g/L、MgSO4·7H2O0.09g/L、FeSO4·7H2O0.0239g/L;所述的阴极液组成为由50mmol/L磷酸钠缓冲液配制的浓度为100mmol/L的K3[Fe(CN)6]混合液。

作为本发明提供的一整套解决方案中的蒙氏假单胞菌的扩展应用,用于微生物燃料电池中进行产电;或用作PNP等有机污染物的生物感受器;或用于PNP等有机污染物的定性及定量检测;或用于降解PNP等有机污染物;或用作冷冻干燥的菌体制成静息细胞进行产电;或用作该菌吸附或包埋在电极载体上的固定化细胞作微生物燃料电池的阳极催化剂。

本发明提供的一整套解决方案系统中的检测方法,包括以下操作步骤:

一、装置首次运行:

1、向阴极室注入由50mmol/L磷酸钠缓冲液配制的浓度为100mmol/L的K3[Fe(CN)6]混合液240mL;

2、向阳极室注入216mL本发明提供的MS培养基;

3、向阳极室接种24mL培养好的并且经过MS洗涤并重新悬浮(OD600=1.35)的本发明提供的蒙氏假单胞菌;

4、蒙氏假单胞菌开始产电,系统中电子装置部分开始实时监测电压;

5、当监测到的电压降到程序预设的基点(例如30mV)时,进行步骤6;

6、自动采样/混样装置吸取一定量浓度已知的PNP标准液(例如250mL)及一定量(根据标准液体积确定)的矿物盐培养基(MineralSalts,MS)干粉,进行混样;

7、系统中的电子装置部分继续实时监测电压,并记录得到从该次加入PNP标准液后装置所监测到的最大电压值;

8、系统中的电子装置部分根据用户预设信息或者用户实时指令,判断是否已经完成全部标准液的检测工作。若未完成,则开启阳极排液装置,待阳极室5内液体排净后,重复(返回到)步骤5;若电子装置的判断结果为已完成,则执行步骤9;

9、系统中的MCU根据上述步骤中记录的各个最大电压值,以及由用户通过输入设备(18)提供的PNP标准液浓度计算拟合得出公式;

二、已经完成首次运行的装置,进行待测液体PNP浓度监测;

A、开启阳极排液装置11,待阳极室5内液体排净后,自动采样/混样装置8吸取一定量的待测溶液(例如240mL)及一定量(例如K2HPO4·3H2O0.204g、KH2PO40.048、MgSO4·7H2O0.0216g、FeSO4·7H2O0.005736g)的矿物盐培养基(MineralSalts,MS)干粉,进行混样;

B、系统中的电子装置部分继续实时监测电压,并记录得到从该次加入PNP标准液后装置所监测到的最大电压值;

C、MCU将步骤B中记录的电压值,代入步骤9得到的公式中,

并进行计算,求得步骤A中吸取的待测溶液的浓度值;

D、系统中的电子装置部分在屏幕等输出设备上显示结果,并将上述步骤所获得的数据、公式等上传至服务器;

三、待电压降到基点(例如30mV)时,MCU根据用户预设条件,或实时指令决定结束系统工作(步骤四),或重复步骤二,以实自动化现实时监测;

四、开启阳极排液装置11,待阳极室5内液体排净后,关闭系统电源。

本发明提供的一整套系统具有以下优点及有益效果:

1、可以自动测量环境中污染的浓度;2、与传统检测方式相比具有操作简单、设备成本低的优点;3、与传统检测方式相比具有便携的特点;4、可以在检测的同降解污染物;5、极大的优化了数据最终处理以及展现的形式,可以实现多地多设备同时远程监控;6、能够对数据进行汇总,方便以后大数据分析。

附图说明:

为了易于说明,本发明由下述的具体实施及附图作以详细描述。

图1是本发明的结构示意图;

图2是本发明提供的检验方法的流程示意图;

图中:

1恒温装置;2阴极电极(碳毡/碳刷);3阳极电极(碳毡/碳刷);4磁力搅拌装置;5阳极室;6阴极室(可更换培养基实现其他工业废水污染物的检测);7质子交换膜;8自动采样/混样装置;9阳极加样孔;10阴极加样孔;11阳极排液装置;12阴极排液装置;13放大芯片;14外部供电;15接地;16AD转换;17MCU;18输入输出设备。

具体实施方式:

如图1至图2所示,本具体实施方式采用以下技术方案:它的硬件装置包含恒温装置1、阴极电极(碳毡/碳刷)2、阳极电极(碳毡/碳刷)3、磁力搅拌装置4、阳极室5、阴极室(可更换培养基实现其他工业废水污染物的检测)6、质子交换膜7、自动采样/混样装置8、阳极加样孔9、阴极加样孔10、阳极排液装置11、阴极排液装置12、放大芯片13、外部供电14、接地15、AD转换16、MCU17、输入输出设备18;阳极室5、阴极室6中均设有磁力搅拌装置4,阳极室5、阴极室6的中间设有质子交换膜7,质子交换膜7的两侧均设有恒温装置1,阳极室5的外侧设有阳极排液装置11,阴极室6的外侧设有阴极排液装置12,阳极室5内设有阳极电极(碳毡/碳刷)3,阳极电极(碳毡/碳刷)3与放大芯片13的正极连接,阴极室6内设有阴极电极(碳毡/碳刷)2,阴极电极(碳毡/碳刷)2与放大芯片13的负极连接,放大芯片13的一侧与外部供电14连接,放大芯片的另一侧为接地15,放大芯片13与AD转换16连接,AD转换16与MCU17连接,MCU17与输入输出设备18相互连接,MCU17的一端与自动采样/混样装置8连接,自动采样/混样装置8与阳极加样孔9连接,MCU17的另一端与阳极排液装置11连接。

本具体实施方式提供的一整套解决方案中的用于阳极液的改进的培养基配方为:K2HPO4·3H2O0.85g/L、KH2PO40.2g/L、MgSO4·7H2O0.09g/L、FeSO4·7H2O0.0239g/L;所述的阴极液组成为由50mmol/L磷酸钠缓冲液配制的浓度为100mmol/L的K3[Fe(CN)6]混合液。

作为本具体实施方式提供的一整套解决方案中的蒙氏假单胞菌的扩展应用,用于微生物燃料电池中进行产电;或用作PNP等有机污染物的生物感受器;或用于PNP等有机污染物的定性及定量检测;或用于降解PNP等有机污染物;或用作冷冻干燥的菌体制成静息细胞进行产电;或用作该菌吸附或包埋在电极载体上的固定化细胞作微生物燃料电池的阳极催化剂。

本具体实施方式提供的一整套解决方案系统中的检测方法,包括以下操作步骤:

一、装置首次运行:

1、向阴极室注入由50mmol/L磷酸钠缓冲液配制的浓度为100mmol/L的K3[Fe(CN)6]混合液240mL;

2、向阳极室5接种培养好的OD600=1.35的本发明提供的蒙氏假单胞菌(Pseudomonasmonteilii);

3、从阳极加样孔9加入50mg/L的PNP标准液,启动电池;

4、蒙氏假单胞菌开始产电,系统中电子装置部分开始实时监测电压;

5、当监测到的电压降到程序预设的基点(例如30mV)时,进行步骤6;

6、自动采样/混样装置吸取一定量浓度已知的PNP标准液(例如250mL)及一定量(根据标准液体积确定)的矿物盐培养基(MineralSalts,MS)干粉,进行混样;

7、系统中的电子装置部分继续实时监测电压,并记录得到从该次加入PNP标准液后装置所监测到的最大电压值;

8、系统中的电子装置部分根据用户预设信息或者用户实时指令判断是否已经完成全部标准液的检测工作。若未完成,则开启阳极排液装置,待阳极室5内液体排净后,重复(返回到)步骤6;若电子装置的判断结果为已完成,则执行步骤9;

9、系统中的MCU根据上述步骤中记录的各个最大电压值,以及由用户通过输入设备(18)提供的PNP标准液浓度计算拟合得出公式;

二、已经完成首次运行的装置,进行待测液体PNP浓度监测;

A、开启阳极排液装置11,待阳极室5内液体排净后,自动采样/混样装置8吸取一定量的待测溶液(例如240mL)及一定量(例如K2HPO4·3H2O0.204g、KH2PO40.048、MgSO4·7H2O0.0216g、FeSO4·7H2O0.005736g)的矿物盐培养基(MineralSalts,MS)干粉,进行混样;

B、系统中的电子装置部分继续实时监测电压,并记录得到从该次加入PNP标准液后装置所监测到的最大电压值;

C、MCU根据步骤8得到的公式代入步骤B中记录的电压值,并进行计算,求得步骤A中吸取的待测溶液的浓度值;

D、系统中的电子装置部分在屏幕等输出设备上显示结果,并将上述步骤所获得的数据、公式等上传至服务器;

三、待电压降到基点(例如30mV)时,MCU根据用户预设条件,或实时指令决定结束系统工作(步骤四),或重复步骤二,以实自动化现实时监测;

四、开启阳极排液装置11,待阳极室5内液体排净后,关闭系统电源。

其中,所述的数字稳压系统是一块整体PCB电路。所述电路放大系统已经做成PCB板子;所述AD转换电路也是做成固定的PCB电路板和MCU放在一起;单片机pcDuino内部集成了8位模数转换器,电源模块包括了一枚9V电池盒和线性稳压器TPS5430模块;输入输出设备是一块7inch1024x600LCD,在可以显示1024x600分辨率的彩色图形;本具体实施方式提供的一整套系统中的蒙氏假单胞菌具有可以感受PNP浓度的特性,在9-36mg/L的PNP浓度范围内,菌体产电量与PNP浓度有显著线性关系。

本具体实施方式可以自动测量环境中污染的浓度,与传统检测方式相比具有操作简单、设备成本低的优点,与传统检测方式相比具有便携的特点,可以在检测的同降解污染物,极大的优化了数据最终处理以及展现的形式,可以实现多地多设备同时远程监控,能够对数据进行汇总,方便以后大数据分析。

以上显示和描述了本发明的基本原理和主要特征以及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号