首页> 外文学位 >Rational Design of Perovskite Based Anode Materials for Solid Oxide Fuel Cells: A Computational Approach.
【24h】

Rational Design of Perovskite Based Anode Materials for Solid Oxide Fuel Cells: A Computational Approach.

机译:用于固体氧化物燃料电池的基于钙钛矿的阳极材料的合理设计:一种计算方法。

获取原文
获取原文并翻译 | 示例

摘要

A key challenge in the development of solid oxide fuel cell (SOFC) technology is related to finding a suitable replacement for Ni-based cermet anodes. Although conventional Ni-based electrodes exhibit excellent catalytic activity and current collection, they suffer from several limitations such as instability upon redox cycling, nickel sintering, and sulfur and carbon poisoning when exposed to practical hydrocarbon fuels. Therefore, alternative anode materials need to be developed for SOFCs. Among the novel anode electrodes, perovskite based materials are of great interest because they have been shown to satisfy most intrinsic SOFC anode requirements such as high thermodynamic stability in anodic environments and strong resistance to carbon deposition and sulfur poisoning.;In this dissertation, we described how "first principles" modeling can be used to rationally develop a doping strategy to obtain mixed ionic/electronic conductivity in SrTiO3 perovskites under anodic SOFC conditions. First, constrained ab initio thermodynamic calculations were employed to evaluate the thermodynamic stability of the doped SrTiO3 phases at synthesized and anodic SOFC conditions. Then, we computed and analyzed the density of states (DOS) of p- and n-doped SrTiO3 to determine the number of charge carriers per unit cell in each phase. In agreement with experimental observations, the computational results reveal that mixed p- and n-doping is an efficient strategy to obtain mixed ionic/electronic conductivity in perovskite oxides such as SrTiO3. Moreover, we have proven that this strategy is valid independent of p- and n-doping site (A- or B-site) in the perovskite structure. We used La and Nb as n-type dopants and Na and Ga as p-type dopants to replace the A-site and B-site cations in the SrTiO 3 perovskite structure, respectively. All p- and n-doped SrTiO 3 perovskite oxides exhibit mixed ionic and electronic conductivity in a reducing environment as long as the concentration of p-dopants is significantly below, e.g., half, the concentration of the n-dopant.;Next, we explain how multiscale simulations can help understand the rate / performance limiting steps in SOFCs based on Sr2Fe1.5Mo 0.5O6-δ (SFM) anodes running on H2. First, we performed constrained ab initio thermodynamic simulations to identify the surface phase of SFM (001) under anodic SOFC conditions. Then, we studied the reaction mechanism of the electrochemical H2 oxidation from first principles and developed a microkinetic model that identified the second H transfer step to be rate determining under operating voltage and temperature. As a result, adding a transition metal to the SFM surface such as Ni that facilitates H transfer should improve the overall cell performance. Indeed, experimental observations confirm this predicted SOFC cell behavior.
机译:固体氧化物燃料电池(SOFC)技术发展中的关键挑战与寻找合适的镍基金属陶瓷阳极替代品有关。尽管常规的镍基电极表现出出色的催化活性和电流收集性能,但它们仍受到一些限制,例如氧化还原循环时的不稳定性,镍的烧结以及暴露于实际烃类燃料中时的硫和碳中毒。因此,需要为SOFC开发替代阳极材料。在新型阳极电极中,钙钛矿基材料备受关注,因为它们已被证明可以满足大多数固有的SOFC阳极要求,例如在阳极环境中的高热力学稳定性以及对碳沉积和硫中毒的强抵抗力。阳极SOFC条件下如何利用“第一性原理”模型合理地开发掺杂策略以获得SrTiO 3 钙钛矿中的混合离子/电子电导率。首先,通过从头算的热力学计算来评估掺杂的SrTiO 3 相在合成和阳极SOFC条件下的热力学稳定性。然后,我们计算并分析了p和n掺杂SrTiO 3 的状态密度(DOS),以确定每个相中每个晶胞的载流子数量。与实验结果相吻合,计算结果表明,混合的p和n掺杂是在钙钛矿氧化物(如SrTiO 3 )中获得混合的离子/电子电导率的有效策略。此外,我们已经证明,该策略与钙钛矿结构中的p和n掺杂位点(A或B位)无关,是有效的。我们分别以La和Nb为n型掺杂剂,以Na和Ga为p型掺杂剂分别取代SrTiO 3 钙钛矿结构中的A位和B位阳离子。只要p掺杂剂的浓度明显低于n的浓度(例如,一半),在还原环境中,所有p掺杂和n掺杂的SrTiO 3 钙钛矿氧化物均具有混合的离子电导率。 -dopant .;接下来,我们解释多尺度模拟如何帮助理解基于Sr 2 Fe 1.5 Mo 0.5 2 上运行的> O 6-δ(SFM)阳极。首先,我们进行了从头开始的热力学模拟,以识别阳极SOFC条件下SFM(001)的表面相。然后,我们从第一性原理研究了电化学H 2 氧化的反应机理,并建立了一个微动力学模型,该模型确定了第二个H转移步骤是在工作电压和温度下确定速率的。因此,向SFM表面添加有助于H转移的过渡金属(如Ni)应改善整体电池性能。实际上,实验观察证实了这种预测的SOFC细胞行为。

著录项

  • 作者

    Suthirakun, Suwit.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号