首页> 外文学位 >Doped perovskite materials for solid oxide fuel cell (sofc) anodes and electrochemical oxygen sensors.
【24h】

Doped perovskite materials for solid oxide fuel cell (sofc) anodes and electrochemical oxygen sensors.

机译:用于固体氧化物燃料电池(sofc)阳极和电化学氧传感器的掺杂钙钛矿材料。

获取原文

摘要

This work focused on the study of three independent projects involving perovskite oxide materials and their applications as solid oxide fuel cell (SOFC) anodes and electrochemical oxygen sensors. The underlying theme is the versatility and tune-ability of the perovskite structure. Reactivity and conductivity (ionic as well as electronic) are modified to optimize performance in a specific application. The effect of Ce doping on the structure and the conductivity of BaFeO3 perovskite materials is investigated and the resulting materials are applied as oxygen sensors. The new perovskite family, Ba1-xCexFeO3-delta (x=0, 0.01, 0.03, and 0.05), was prepared via a sol-gel method. Powder XRD indicates a hexagonal structure for BaFeO3 with a change to a cubic perovskite upon Cerium doping at the A site. The solubility limit of Ce at the A site was experimentally determined to be between 5-7 mol %. Bulk, electronic and ionic conductivities of BaFeO3-delta and Ba0.95Ce0.05FeO3-delta were measured in air at temperatures up to 1000?C. Cerium doping increases the conductivity throughout the entire temperature range with a more pronounced effect at higher temperatures. At 800°C the conductivity of Ba0.95Ce.05FeO3-delta reaches 3.3 S/cm. Pellets of Ba0.95Ce.05FeO3-delta were tested as gas sensors at 500 and 700°C and show a linear, reproducible response to O2. Promising perovskite anodes have been tested in high sulfur fuel feeds. A series of perovskite solid oxide fuel cell (SOFC) anode materials: Sm0.95Ce0.05FeO3-delta, Sm0.95Ce0.05Fe0.97Ni0.03O3-delta and Sm0.95Ce0.05Fe0.97Co0.03O3-delta have been tested for sulfur tolerance at 500°C. The introduction of the extreme 5% H2S enhances the performance of these anodes, verified by EIS and CA experiments. Post mortem analyses indicate that the performance XII enhancement arises from the partial sulfidation of the anode, leading to the formation of FeS2, Sm3S4 and S on the perovskite surface. Testing in lower concentrations of sulfur, more common in sour fuels, 0.5% H2S, also enhances the performance of these materials. The SCF-Co anode shows promising stability and an increase in exchange current density, io, from 13.72 to 127.02 mA/cm2 when switching from H2 to 0.5% H2S/99.5% H2 fuel composition. Recovery tests performed on the SCF-Co anode conclude that the open cell voltage (OCV) and power density of these cells recover within 4 hours of H2S removal. We conclude that the formation of metal sulfide species is only partially reversible, yielding an anode material with an overall lower Rct upon switching back to pure H2. Combining their performance in sulfur containing fuels with their previously reported coke tolerance makes these perovskites especially attractive as low temperature SOFC anodes in sour fuels. A new perovskite family Ba1-xYxMoO3 (x=0-0.05) has been investigated in regards to electrical conductivity and performance as IT-SOFC anode materials for the oxidation of H2. Refinement of p-XRD spectra as well as SEM imaging conclude that the solubility limit of Y doping at the A site is 5 mol%, beyond which Y2O3 segregation occurs. The undoped BaMoO3 sample has a colossal room temperature conductivity of 2500 S/cm in dry H2. All materials maintain metallic conductivity in the temperature range of 25-1000°C with resistance increasing with Y doping. The Ba1-xYxMoO3 (x=0, 0.05) materials exhibit good performance as SOFC anode materials between 500-800°C, with Rct values at 500°C in dry H2 of 3.15 and 6.33 ohm*cm2 respectively. The catalytic performance of these perovskite anodes is directly related to electronic conductivity, as concluded from composite anode performance.
机译:这项工作专注于研究涉及钙钛矿氧化物材料的三个独立项目,以及它们作为固体氧化物燃料电池(SOFC)阳极和电化学氧传感器的应用。基本主题是钙钛矿结构的多功能性和可调节性。修改了反应性和电导率(离子和电子)以优化特定应用中的性能。研究了Ce掺杂对BaFeO3钙钛矿材料结构和电导率的影响,并将所得材料用作氧传感器。通过溶胶-凝胶法制备了新的钙钛矿家族,Ba1-xCexFeO3-δ(x = 0、0.01、0.03和0.05)。粉末XRD表示BaFeO3的六边形结构,在A位置掺杂铈后变为立方钙钛矿。通过实验确定Ce在A位的溶解度极限在5-7mol%之间。 BaFeO3-δ和Ba0.95Ce0.05FeO3-δ的体积,电子和离子电导率是在空气中,最高温度为1000°C的条件下测量的。铈掺杂提高了整个温度范围内的电导率,在更高的温度下效果更显着。在800°C下,Ba0.95Ce.05FeO3-δ的电导率达到3.3 S / cm。 Ba0.95Ce.05FeO3-δ球粒在500和700°C下作为气体传感器进行了测试,并显示出对O2的线性可再现响应。有前景的钙钛矿阳极已在高硫燃料进料中进行了测试。已测试了一系列钙钛矿型固体氧化物燃料电池(SOFC)阳极材料:Sm0.95Ce0.05FeO3-delta,Sm0.95Ce0.05Fe0.97Ni0.03O3-delta和Sm0.95Ce0.05Fe0.97Co0.03O3-delta 500°C时的公差。 EIS和CA实验证明,引入5%的H2S可以增强这些阳极的性能。事后分析表明,由于阳极的部分硫化而使性能XII增强,从而导致在钙钛矿表面上形成FeS2,Sm3S4和S。在较低浓度的硫(0.5%H2S)中进行测试(硫在硫燃料中更常见)也可以提高这些材料的性能。当从H2转换为0.5%H2S / 99.5%H2燃料成分时,SCF-Co阳极显示出令人鼓舞的稳定性,交换电流密度io从13.72增至127.02 mA / cm2。在SCF-Co阳极上进行的恢复测试得出结论,这些电池的开孔电压(OCV)和功率密度在去除H2S后4小时内恢复。我们得出的结论是,金属硫化物的形成仅是部分可逆的,在转换回纯H2时,阳极材料的Rct总体较低。将它们在含硫燃料中的性能与先前报道的耐焦炭性相结合,使得这些钙钛矿特别适合作为酸性燃料中的低温SOFC阳极。已经研究了一种新型钙钛矿系列Ba1-xYxMoO3(x = 0-0.05)的导电性和作为IT-SOFC阳极材料氧化H2的性能。 p-XRD光谱的细化以及SEM成像得出的结论是,Y掺杂在A位点的溶解度极限为5 mol%,超过此极限会发生Y2O3偏析。未掺杂的BaMoO3样品在干燥的H2中的室温室温电导率为2500 S / cm。所有材料均在25-1000°C的温度范围内保持金属导电性,并且电阻随Y掺杂而增加。 Ba1-xYxMoO3(x = 0,0.05)材料在500-800°C之间作为SOFC阳极材料表现出良好的性能,在干燥H2中500°C下的Rct值分别为3.15和6.33 ohm * cm2。从复合阳极性能可以得出结论,这些钙钛矿阳极的催化性能与电导率直接相关。

著录项

  • 作者

    Penwell, William Donald.;

  • 作者单位

    University of Ottawa (Canada).;

  • 授予单位 University of Ottawa (Canada).;
  • 学科 Chemistry Physical.;Chemistry Analytical.
  • 学位 M.Sc.
  • 年度 2014
  • 页码 0 p.
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号