首页> 中国专利> 用于激光烧蚀的具有增强对比的微孔载体

用于激光烧蚀的具有增强对比的微孔载体

摘要

一种用于制造植入各向异性导电膜的器件或组件的载体带。该载体带包括具有牺牲性的增强对比层的基底。通过激光烧蚀经过增强对比层,在载体内形成微孔。在去除增强对比层之后,多个导电粒子被分配在载体带表面上通过激光烧蚀形成的微孔阵列内部,并转移到粘合剂层上。该增强对比层使得能形成具有细间距和的微孔和具有高长径比的间距和分区。

著录项

  • 公开/公告号CN105102514A

    专利类型发明专利

  • 公开/公告日2015-11-25

    原文格式PDF

  • 申请/专利权人 兆科学公司;

    申请/专利号CN201480013932.8

  • 申请日2014-02-24

  • 分类号C08J7/04(20060101);H05K3/32(20060101);B32B3/26(20060101);B32B3/30(20060101);

  • 代理机构中国国际贸易促进委员会专利商标事务所;

  • 代理人陈季壮

  • 地址 美国加利福尼亚

  • 入库时间 2023-12-18 12:16:22

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-08-05

    专利权的转移 IPC(主分类):C08J 7/04 专利号:ZL2014800139328 登记生效日:20220722 变更事项:专利权人 变更前权利人:宝丽来有限责任公司 变更后权利人:宝丽来IP有限责任公司 变更事项:地址 变更前权利人:荷兰阿姆斯特丹 变更后权利人:荷兰恩斯赫德

    专利申请权、专利权的转移

  • 2019-10-08

    专利权的转移 IPC(主分类):C08J7/04 登记生效日:20190916 变更前: 变更后: 申请日:20140224

    专利申请权、专利权的转移

  • 2018-09-28

    授权

    授权

  • 2016-03-09

    实质审查的生效 IPC(主分类):C08J7/04 申请日:20140224

    实质审查的生效

  • 2015-11-25

    公开

    公开

说明书

本发明涉及制造诸如各向异性导电膜(ACF)之类的电子器件和组件的方法。本发明代表Liang等人的美国公布申请2010/0101700("Liang'700")中公开的发明改进,其中使用增强对比层(IEL),通过激光烧蚀,在载体网中形成微孔。

发明背景

为讨论本发明的背景,可参考以上提及的Liang'700。Liang'700公开了由提供具有非随机微孔阵列的载体网并将导电粒子分散在微孔中而制造具有导电粒子的非随机阵列的ACF的方法。优选地,粒子分散在载体网上,使得实质上每一孔中有一个粒子。载体网经传输与粘合剂膜接触,且粒子在接触时便转移至膜上。

在载体网中形成微孔所使用的一种方法是使用例如穿过遮罩的KrF和ArF准分子激光的激光烧蚀微切削。参见共同受让的美国公布2009/0053859;2010/0101700;和2012/0295098,本文通过参考将其全文引入。

已报道了,采用通常数十到数百bar的相对高压的烧蚀卷流(plume),烧蚀聚合物的局部表面温度可达到大于1000°K。已经观察到微结构形成,这是由于碎片再沉积和再凝固的横向材料熔体从中心流动到激光辐照点的周边所致。对于尤其高长径比(即影像或影像间隔的高度/宽度或深度/宽度之比)的细间距影像再生来说,因可归因于所使用的遮罩和光热工艺引发的前述材料的熔体流动、碎片形成和再沉积的不希望的光衍射和散射,通过这一方法可实现的分辨率通常严重劣化。

也已经报道了通过使用具有连贯影像修正的投影遮罩,各种基底上的各种波长的多脉冲辐照,滤光辐照,液体辅助或水下辐照,可实现改进的高长径比和分辨率。然而,在所有情况下,影像间隔的窄间距间隔(约<5um)和高长径比(约>1)的细间距(约<15um)影像的制造仍然是主要挑战,尤其在卷装进出工艺中。

发明概述

发明之一表现为在制造诸如ACF、薄膜覆晶(COF)或玻璃覆晶(COG)之类的器件组件中有用的载体,其中该载体包括可去除牺牲性IEL,借此而通过激光烧蚀在载体上形成微孔。

已观察到在本发明的若干实施方案中产生的微孔阵列,在微孔载体膜的制造和固定阵列ACF的卷装进出制造中的粒子填充和转移,提供显著改进的再现性和更宽的处理窗口,正如以上引证的专利申请中所提出和图2中所描绘的。已经观察到在填充工艺中填充效率(即微孔捕捉粒子的百分比)和粒子转移工艺中微孔网或环从粘合剂层中的释放效率方面的显著改进。尽管不受理论束缚,但认为牺牲性IEL有效地预防碎片和低分子量激光-劣化或光解/热解材料熔体直接接触基底或与之形成强烈的附着/内聚。低分子量激光-劣化或光解/热解材料倾向于相当极性和有时充电。它们倾向于相当粘,但在溶解或剥除IEL的后续影像显影工艺中被去除或洗去。结果,在粒子转移工艺中,本发明的微孔载体网或环显示出针对粘合剂层显著较好的释放性能。另一方面,在粒子填充工艺中所观察到的改进被认为是使用IEL所获得的较好的确定的孔间隔和轮廓的直接结果,其可以在卷装进出射流粒子的填充工艺期间较好地包含粒子。

发明之一表现为载体带,它包括基底和罩面涂布基底的增强对比层(IEL),其中IEL是可激光烧蚀的且防止激光-劣化的材料干扰形成微孔并可产生具有细间距、高分辨率和高长径比的微孔载体。

本发明的另一表现为使用具有通过激光烧蚀而在载体中形成微孔阵列的载体片、网或带,制造诸如ACF之类的电子器件的工艺。微孔用导电粒子填充,且载体网以与Liang'700文献中所公开的工艺或卷装进出工艺中的网类似的方式使用。

本发明的另一表现为具有IEL的载体片、带或网,其中微孔以非随机但可变的图案布局,以减少周期性缺陷的影响。

本发明的再一表现为具有高分辨率和高孔密度的微孔的非随机微孔载体片、带或网用于微流体装置、微流控组装工艺和应用。

附图简述

图1A-1B是根据本发明之一的实施方案的载体片、网或带的截面示意图。

图1C和1D是图1A和1B的载体片、网或带的示意截面图,其显示根据本发明的两个实施方案,通过激光烧蚀在基底内形成的微孔的位置。

图lE-1至图1E-15是使用具有5μm直径和3μm宽分区的重复圆形开口的交错的6-8μm间距光罩,在有和无约0.5μmIEL罩面层情况下,各种PET基底的SEM显微照片。除非清楚地指明,在所有状况下,调整激光能量以产生具有约4-5μm深度的孔的微孔载体。图中所示的所有SEM照片为在IEL剥除后拍摄。

根据本发明的一个实施方案,提供图lE-1用于比较,且是在由包含着色PET(获自DuPontTeijinFilms的MELINEX)组成的载体(其不包括IEL)中形成的微孔的SEM照片,和图1E-2是用由PKFE(获自InChemCorp.,SouthCarolina的苯氧基树脂)形成的约0.5um厚的IEL预涂布的MELINEX基底上形成的微孔的SEM照片。

图1E-3是在透明PETMELINEX薄膜上形成的微孔的SEM照片,和图1E-4至1E-15是在用约0.5um厚的IEL预涂布的MELINEX薄膜上形成的微孔的照片,其中所述IEL由苯氧基树脂PKHB(图1E-4)和PKCP(图1E-5)(二者均获自InChemCorp.);Novolac树脂RezicureTM3500(图1E-6)和3100(图1E-7)(二者均获自SIGroup,NY);聚苯乙烯Mw=35,000(图1E-8),聚苯乙烯-马来酸酐共聚物,Mw=l,700(图1E-9),聚(苯乙烯-共-甲基丙烯酸甲酯),Mw=30,000(图lE-10),PMMA,Mw=350,000(图lE-11),聚乙烯醇,88%水解Mw=30,000(图1E-12),聚乙烯缩丁醛,Mw=50,000(图1E-13),醋酸丁酸纤维素Mw=50,000(图1E-14)(所有均获自Sigma-Aldrich),和获自的Michelman,Inc.,OHPE-WaxME48040M2(图1E-15)形成。

图lF-1和1F-2是在分别不具有和具有由PKHB形成的约0.5um厚的IEL情况下,在聚(萘二甲酸乙二酯)(获自DuPontTeijinFilms的PENQ51薄膜)上形成的微孔的SEM照片。

图lG-1和1G-2是在分别不具有和具有由PKHB形成的约0.5um厚的IEL情况下,在获自DuPont的聚酰亚胺VN-300薄膜上形成的微孔的SEM照片。

图2是根据本发明的一个实施方案的制造工艺的示意性描绘,其中使用载体网或带,在卷装进出工艺中形成ACF,其中如Liang'700中所公开的,导电粒子从微孔转移到并置的粘合剂层。

图3是在本发明的一个实施方案中使用的用于在载体网中形成微孔的激光投影系统的示意性描绘。

详细说明

Liang'700在本文中通过参考全文引入。

图1A是根据本发明一个实施方案的载体片、网或带10的截面图。载体片10包括用IEL14罩面涂布的基底12,IEL14可直接粘结到基底12上。在另一实施方案中,如图1B所示,载体10可任选地包括可置于IEL层14和基底12之间的中间孔形成层16。在一个特别的实施方案中,通过聚对苯二甲酸乙二酯(PET),PEN,聚酰亚胺等形成基底12,和IEL14是诸如PKFE和PKHB苯氧基树脂(以下识别的)之类的成像加强牺牲性层的薄的罩面层。微孔能提供超细间距和间隔。

图1C和1D描绘了通过激光烧蚀,在载体10内形成微孔18之后,和如虚线所示,在去除IEL层14之后,图1A中所示的载体。

为了在基底12或孔形成层16上形成IEL,形成IEL的材料可溶解或分散在诸如水,醇,乙酸乙酯,乙酸异丙酯,丙酮,MEK,环己酮,THF,烷氧基醚,和甲苯…等等之类的溶剂中,并在基底上通过例如刮刀、绕线棒、槽或缝模,凹板,逆转辊和幕涂涂布。真空沉积,化学蒸汽沉积,构形和等离子体涂布也可用于薄的涂层。在一些情况下,它们可以以胶乳或乳液形式涂布。任选地,可使用诸如Silwet,Triton和Pluronic表面活性剂之类的润湿剂,以改进涂层的品质。除非清楚地指明,控制涂层厚度为约0.05-4μm,优选约0.2-2μm,甚至更优选约0.5-1.5μm。太薄的涂层倾向于导致针孔和不足的阻挡性能来抵抗烧蚀工艺期间产生的材料熔体流动。另一方面,过厚的涂层可导致浪费激光能量或较窄开口或较浅深度的微孔。烧蚀后,通过溶剂或清洗液和/或使用诸如获自SurfaceArmor,TX的Tape364之类的粘合剂胶带的物理剥离而将IEL和烧蚀碎片剥除,在基底或孔形成层上形成微孔阵列。

在一个实施方案中,可改性类似于Liang'700的图3中所示的ACF生产站的工艺,包括激光烧蚀装置,取代在ACF生产站的第一阶段通过激光烧蚀制造多个微孔的压花装置。微孔阵列可如图1A中所示,直接在基底12上形成,或者如图1B中所示,在预施加到基底12上的孔形成层16上形成。在一个实施方案中,用于基底的合适材料包括,但不限于,聚酯,例如聚对苯二甲酸乙二酯(PET)和聚萘二甲酸乙二酯(PEN),聚碳酸酯,聚酰胺,聚丙烯酸酯类,聚砜,聚醚类,聚酰亚胺类(PI),和液晶聚合物及其共混物,复合材料,层压体或夹层薄膜。

发现用薄的可烧蚀牺牲性影响加强层14罩面涂布待烧蚀的基底,可获得影像分辨率和对比度的显著改进。在没有束缚于任何理论的情况下,认为可去除的牺牲性IEL减少(1)因来自遮罩的散射或衍射光的不利影响,和/或(2)在碎片或重新沉积熔体材料和基底之间形成强烈附着力或内聚力的可能性。高分辨率和对比度的影像,特别是极细间隔(例如,间距小于约15μm和间隔小于约5μm)和高长径比(例如,在微孔,微孔隔墙,或微孔间的间隔方面大于约1)的那些影像,可通过使用诸如溶剂溶解/清洗的湿法显影工艺或者诸如剥离或干法蚀刻的干式显影工艺去除IEL而显影。在图lE-1和1E-15和lF-1和1F-2和lG-1和1G-2中可清楚地看到分辨率、影像清晰度和对比度的改进。

在一个实施方案中,IEL罩面层可以是约0.05-约4μm,在更特别的实施方案中,为约0.2-约2μm。基底层的厚度为约10μm-200μm,和更特别地,在本发明的选择实施方案中,厚度为约50μm-150μm。在一个实施方案中,IEL树脂选自苯氧基树脂,酚树脂,聚碳酸酯,聚苯乙烯,聚芳基醚,聚芳砜,和它们的共聚物或共聚物。苯氧基和酚树脂是尤其有用的,因为它们是可烧蚀的,且是大多数准分子激光器光的波长的强消光系数。它们还提供对基底12或孔形成层16(若存在的话)优良的粘着,和针对在激光烧蚀期间形成的碎片熔体流动的阻力。在烧蚀后,如前所述,剥除IEL以及烧蚀碎片,暴露高对比度的微孔和高长径比的隔墙以及光滑的表面。对于ACF和对于高产率的微流控粒子分布工艺来说,这些微孔是尤其有用的。

有用的苯氧基树脂的代表性实例包括,但不限于,PKFE,PKHB和PKCP,它们全部获自InChemCorp。代表性苯氧基树脂包括,但不限于,获自Shipley,MA和Georgia-Pacific的酚醛清漆树脂,和获自SIGroup的RezicureTM甲酚或其他烷基苯酚的酚醛清漆树脂。有用的IEL树脂的其他实例包括,但不限于,聚苯,聚碳酸酯,聚芳基醚,聚芳砜,和它们的共聚物或共混物。在图lE-1(着色PET),图1E-3(透明PET),图lF-1(PEN)和图lG-1(PI)中示出了在没有任何IEL情况下,通过在基底上直接烧蚀获得的6-8um间距,5um直径和3-4um深度的微孔的SEM显微照片。例外的是聚酰亚胺(图lG-1),这种细间距微孔阵列的隔墙因烧蚀工艺而严重失真。尽管聚酰亚胺基底的烧蚀显示出较少的严重失真,但观察到在聚酰亚胺薄膜上的直接烧蚀产生显著量非所需的暗碎片,其难以在烧蚀工艺期间通过真空和/或吹气而去除。相反,在IEL罩面涂布的聚酰亚胺薄膜上在烧蚀期间形成的碎片显示出显著较少的倾向粘附到IEL层上,且相对容易通过吹气或真空去除。在聚酰亚胺薄膜上使用IEL的方式改进连续烧蚀工艺的功效,且不需要清洗基底或自动卷装进出视觉识别工艺中用于对准的光学器件。为了比较,在图1E-2(着色PET/PKFE),图1E-4(PET/PKHB),图1E-5(PET/PKCP),图1E-6(PET/酚醛清漆Resicure3500),图1E-7(PET/酚醛清漆Resicure3100),图1F-2(PEN/PKHB)和图1G-2(聚酰亚胺/PKHB)中示出了具有厚度约0.5μm的苯氧基或酚类/酚醛清漆IEL罩面层的相同基底的SEM显微照片。在所有情况下,在IEL剥除之后,采用苯氧基或酚类IEL罩面层生产的微孔显示出隔墙对比度、长径比和光滑度显著的改进。IEL提供微流控粒子分散工艺的显著更宽的处理窗口。还观察到在烧蚀期间产生的碎片可通过真空和/或吹气容易地去除。同样重要的是,采用IEL生产的微孔网或环还显示出显著较好的释放性能,且在制造非随机阵列ACF中,在粒子转移工艺中导致显著高的产率和宽得多的处理窗口。

表1显示出IEL对三个烧蚀过的基底和获自BerryPlasticsCorp.Indiana的5mm宽的粘合剂胶带Polyken781之间的粘性的影响。在室温下,用手动辊,将该粘合剂胶带层压到烧蚀过的基底上,并采用获自TextureTechnologiesCorp.,NY的ΤΑ-ΧΤ2i结构分析仪,在5cm/min的速度和90°的剥离角下,测量剥离附着力。

表1:IEL对烧蚀过的基底相对于粘合剂胶带Polyken781的附着力的影响

可清楚地看出,在所有情况下,使用IEL(厚度为约0.5μm的PKHB)减少烧蚀过的基底对粘合剂胶带的附着力。这导致粒子转移工艺中处理窗口的显著改进。

在图1E-8(PET/PS(聚苯乙烯)),图1E-9PET/SMA(聚苯乙烯-共-马来酸酐)),图1E-10(PET/聚苯乙烯-共-甲基丙烯酸甲酯),图1E-11(PET/PMMA(聚甲基丙烯酸甲酯)),图1E-12(PET/PVA(聚乙烯醇)),图1E-13(PET/PVB(聚乙烯缩丁醛)),图1E-14PET/CAB(乙酸丁酸纤维素))和图1E-15(PET/PE蜡)中示出了在透明PET上采用各种IEL罩面层生产的微孔的更多SEM显微照片。在聚苯乙烯和相关共聚物的情况下,观察到微孔对比度或隔墙仅仅有限的改进,尽管与不具有罩面层的对照样品相比,它们全部提供烧蚀碎片的容易清洗。在没有束缚于理论的情况下,认为尽管它们提供碎片和基底之间的阻挡,但在激光输出波长范围内具有低消光系数的那些材料(PMMA,PVA,PVB,CAB和PE)没有显示出针对光散射或衍射的对比度加强效果。

任选地,载体可包括置于基底之间和罩面涂布的IEL之下的可烧蚀的孔形成层。孔形成层可没有限制地包括热塑性材料,热固性材料或其前体,正或负的光致抗蚀剂,或无机材料。这种孔形成层的代表性实例包括,但不限于,聚碳酸酯,聚酰亚胺(PI),聚芳基醚,聚芳基酯,聚砜,聚芳基硅酮和它们的共聚物或共混物/复合材料。

图2描绘了根据本发明的一个实施方案,在其表面上具有微孔阵列125的可重复使用的载体网或带190。载体网190包括基底。在一个实施方案中,在载体网190上直接形成微孔阵列125。在另一实施方案中,在下方基底载体网170上的孔形成层160内形成微孔阵列125。用于载体网170的合适材料包括,但不限于,聚酯,例如聚对苯二甲酸乙二酯(PET)和聚萘二甲酸乙二酯(PEN),聚碳酸酯,聚酰胺,聚丙烯酸酯,聚砜,聚醚,聚酰亚胺(PI),和液晶聚合物和它们的共混物,复合材料,层压体,或夹层薄膜。在一个实施方案中,载体网是VN300TM,它是获自DuPont的(芳族聚酰亚胺)薄膜。

在本发明的一个实施方案中,为了实现高产率的粒子转移,在烧蚀载体形成微孔之后,可用释放材料的薄层(未示出)处理载体网的表面,以减少微孔载体网190和粘合剂层120之间的附着力。任选地,可在微孔形成步骤之前或之后,通过涂布,印刷,喷涂,蒸汽沉积,热转移,或等离子体聚合/交联,施加剥离层。正如Liang'700中公开的,用于剥离层的合适材料包括,但不限于,氟聚合物或低聚物,硅油,氟硅酮,聚烯烃,蜡,聚(环氧乙烷),聚(环氧丙烷),具有长链疏水嵌段或支链的表面活性剂,或它们的共聚物或共混物。

可使用激光烧蚀工艺,在网中形成微孔。在一个实施方案中,在聚酰亚胺或PET网上使用UV准分子激光烧蚀穿过光罩,制造不同形状和尺寸的图案。通过光罩设计,预先确定所产生的微米图案的形状与尺寸和图案的布局。在美国公布2006/0280912和Liang'700中公开了图案的尺寸,形状和间隔的变化。固定的阵列图案可以改变。在圆形微孔的情况下,可使用代号X-Y代表图案,其中X是孔的直径,和Y是相邻孔之间的边缘至边缘的距离,单位微米。典型的微孔图案间距包括5-3,5-5,5-7和6-2图案。所选图案将部分取决于每一电极所要求的粒子数量。为了增加粒子密度和/或降低电极的最小粘结面积,微孔图案可交错。

图3示出了遮罩-基激光投影烧蚀系统的一个实例,其中激光束60穿过光束定形光学器件62以均衡激光强度。通过光罩64,产生所需的微孔图案布局,制造具有所需尺寸和形状的多个激光束66。与投影透镜系统68结合,调节光束强度或光束脉冲数量,在具有所需开口和深度的网61中产生微孔。透镜系统68可用于减少光。在一个实施方案中,可以以控制的方式,偏移或随机化孔至孔的距离,以减少粘结期间周期性的线缺陷的影响。在一个实施方案中,可选择孔的尺寸,使得每一孔仅仅容纳一个导电粒子。在一个实施方案中,在非圆形孔的情况下,导电粒子和微孔的直径或孔的跨度为约2-10微米。

根据本发明的一个实施方案,定位微孔,以减少导电粒子图案中周期性/反复的线缺陷的影响。在微孔的位置内实施控制但可变的调整,以防止这些缺陷,正如美国申请序列号13/233,360中所公开的,在本文中通过参考将其引入。

可通过采用射流离子分布工艺和捕获工艺,进行导电粒子110的沉积,其中每一导电离子被捕获在单一微孔125内。存在许多可使用的捕获工艺。例如,可使用卷装进出的连续射流粒子分布工艺,在每一微孔内部捕获仅仅一个导电粒子。

在一个实施方案中,将微孔环置于具有悬臂辊的粒子填充涂布器上。通过机械搅拌混合异丙醇(IPA)中3-6wt%导电粒子的分散体,并借助例如槽或狭缝涂布模,雾幕,或喷嘴经过获自ColeParmer的具有Masterflex泵的L/S13管道,通过射流工艺分散。使用100%针织聚酯刮刷器缠辊,将导电粒子填充到微孔内。使用具有真空装置的获自ShimaAmericanCo.的聚氨酯辊,仔细地去除过量粒子(微孔外侧),以回收导电粒子。可收集并循环所回收的粒子到供应料斗中以供重新施加到网190上。在一个实施方案中,可使用大于一个分配站110,以确保导电粒子112被捕获在每一微孔125内并进而最小化或减少不含粒子的微孔数量。

被捕获的粒子110然后可从微孔阵列转移到粘合剂层120上的预先确定的位置上。典型地,在这些转移的导电粒子之间的距离必须大于渗滤阈值,所述渗滤阈值是导电粒子变为连接或聚集时的密度阈值。一般地,渗滤阈值是微孔阵列结构的结构/图案的函数并针对多个导电粒子。

例如在射流组装之后,可期望使用一种或多种工艺,以去除过量的导电粒子。卷装进出的连续射流粒子分布工艺可包括清洗工艺,从微孔阵列的顶部去除过量的导电粒子。清洗工艺可以是非接触的清洗工艺,接触清洗工艺,或非接触和接触清洗工艺的有效组合。

粒子清洗工艺的某些例举的实施方案使用非接触的清洗工艺,其中没有限制地包括一种或多种吸气工艺,吹气工艺,或溶剂喷洒工艺。可例如通过吸气装置累积去除的过量导电粒子以供回收或重新使用。可通过分配清洗流体,例如,但不限于,喷洒溶剂或溶剂混合物,进一步辅助非接触的吸气工艺,以改进清洗效率。本发明的某些其他例举的实施方案可使用接触清洗工艺,从微孔阵列的表面上去除过量的导电粒子。接触清洗工艺包括使用无缝毛毡,刮刷器,刮刀,粘合剂材料,或粘辊。当采用无缝毛毡时,也可使用吸气工艺,从无缝毛毡表面上回收导电粒子并刷新毛毡表面。在这一毡结/吸气工艺中,毛细力和吸力二者采用从无缝毛毡施加的吸力,拖拉过量导电粒子,以去除并回收过量粒子。可通过分配清洗流体,溶剂或溶剂混合物,进一步辅助这一吸气工艺,以改进清洗效率。

在射流填充步骤160之后,在微孔内的导电粒子可转移到基底130上,所述基底130用未固化的粘合剂120预先涂布或者在生产线上涂布。通过反复粒子填充和转移步骤,重新使用微孔带190。

如图2所示,在基底或剥离膜130上提供粘合剂组合物120。该粘合剂组合物可以是环氧组合物。在一个实施方案中,它可以是在美国公布申请2010/0317545,2010/0101700,2009/0181165;美国专利7,923,488;4,740,657;6,042,894;6,352,775;6,632,532;J.Appl.PolymerSci,56,769(1995)和J.Mater.Sci,(2008)43,3072-3093中公开的组合物,在本文中通过参考将其全文引入。在一个实施方案中,该粘合剂含有用量为约0.5-10wt%的核-壳橡胶粒子,例如DowChemicalCompanyEXL2335或热塑性弹性体,例如获自Arkema,Inc.,PA的NanostrengthR丙烯酸类嵌段共聚物作为增韧剂或各成分的相容剂。

为了实现从微孔环转移粒子到粘合剂层120上的高产率,粘合剂层120的内聚强度应当不小于粘合剂层和微孔阵列125之间的粘合强度;粘合剂层120和微孔阵列110之间的粘合强度应当小于粘合剂层120和携带该粘合剂层120的基底130(剥离衬里)之间的粘合强度。可通过剥离涂层和微孔阵列薄膜的性能,粘合剂的组成,和使用含电晕和等离子体处理的表面处理或其组合,来控制粘合剂对微孔阵列薄膜或剥离衬里的粘合强度。

根据本发明的一个实施方案,可在接触微孔带之前,预先调节或退火涂布的粘合剂。预先调节的温度典型地高于在粘合剂中所使用的聚合物的热变形或玻璃化转变温度并低于粘合剂开始固化时的起始温度。在一个实施方案中,形成粘合剂的聚合物或树脂的玻璃化转变温度为约10℃-20℃,和粘合剂的起始固化温度为约60℃-75℃,二者均通过DSC,在5℃/min的加热速率下测量。在这些条件下,约20-30℃的预先调节或退火温度是有用的。

在某些情况下,有利的是使用横跨粘合剂的厚度显示出模量梯度的粘合剂层,且在剥离衬里侧模量较高和在粘合剂侧模量较低。可通过从导电粒子分布工艺中引入痕量溶剂,通过调节转移工艺期间引入的温度梯度,或者通过这二者,实现模量梯度。可通过施加表面加热源,通过使用来自剥离衬里的散热,或者这二者,实现温度梯度。表面加热源可以是,但不限于,加热辊源,红外源,热空气源,或线源。这些例举的来源的合适组合也可以是所需的。

在一个实施方案中,在ACF基底130,例如聚对苯二甲酸乙二酯(PET)和聚萘二甲酸乙二酯(PEN),聚碳酸酯,聚酰胺,聚丙烯酸酯类,聚砜,聚醚,聚酰亚胺(PI),和液晶聚合物薄膜上布置粘合剂层120。在转移导电粒子之后,膜被切割并卷绕成卷筒。基底的背侧然后接触粘合剂的顶面。在这种情况下,在粘合剂和基底背面之间的粘着力应当低于粘合剂对基底正面(涂布侧)的附着力,以确保ACF的合适的把持能力。

导电粒子转移工艺的非限制性例举实施方案可利用粘合剂层和微孔阵列之间的微分(differential)剪切工艺。通过粘合剂涂布的剥离衬里和微孔阵列之间的网速度差异,实现微分剪切。剥离衬里的网速度可以略高于或低于微孔阵列。

在导电粒子转移到粘合剂层上之后,该粒子可部分包埋在粘合剂层内。这些部分包埋的导电粒子可改进ACF的粘结性能和具有较高的粘合强度(尤其当使用低粘结压力时),减少的空间和较低的接触阻力。任选地,在导电粒子转移到粘合剂层上之后,可进一步处理粘合剂层,具有模量梯度和跨越粘合剂层建立的粘度梯度,且承载导电粒子的粘合剂表面一侧拥有较高的模量和较高的粘度。这一较高的模量和较高的粘度可辅助在ACF粘结应用期间,维持导电粒子在它们非-随机的阵列位置处。可通过采用加热工艺,其中包括,但不限于,表面辐射,红外辐射,UV辐射,或加热辊加热工艺,实现跨越粘合剂层的粘度梯度。这些加热工艺的合适组合也可以是有效的。

正如Liang'700中所公开的,任选地,可在粘合剂层的顶侧上施加第二基底140,以保护并改进粘合剂的释放性能。在粘合剂层120和第一基底130或第二基底140之间的粘合强度必须弱于粘合剂层的内聚强度。粘合剂层120和第一基底130之间的粘合强度必须强于粘合剂层120和第二基底140之间的粘合强度。粘合剂层120和第一基底130之间的粘合强度必须弱于粘合剂层和粘结基底(未示出),例如印刷电路板,柔性印刷电路板,聚合物薄膜,玻璃等之间的粘合强度,以便在ACF粘结应用的预粘结工艺之后,能释放基底。

所得薄膜100可直接用作非-随机阵列ACF,其中导电粒子110在粘合剂薄膜120的顶部上且不可能被粘合剂完全覆盖。任选地,可在转移后的粒子层上罩面涂布额外粘合剂层的薄层,以改进非随机的阵列ACF薄膜的粘性,尤其当粒子浓度高时。不同于粘合剂薄膜120的粘合剂可用于罩面涂布。

可在层压站180处,进一步层压薄膜100"与任选地用粘合剂预涂布的基底140,导致夹在两个基底130和140之间的非随机的阵列ACF100。在粘合剂120和两个基底130与140之间的粘合强度应当低于粘合剂的内聚强度。为了在粘结期间,促进从粘合剂中顺序剥离两个基底,优选该粘合强度之一显著高于另一个。

在以上提及的工艺中所使用的粘合剂可以是热塑性,热固性的,或者是它们的前体。有用的粘合剂包括,但不限于,压敏粘合剂,热熔粘合剂,热或辐射可固化的粘合剂。该粘合剂可包括例如环氧化物,酚树脂,胺-甲醛树脂,聚苯并噁嗪,聚氨酯,氰酸酯,丙烯酸类树脂,丙烯酸酯类,甲基丙烯酸酯类,硫醇-烯,乙烯基聚合物,橡胶,例如聚(苯乙烯-共-丁二烯)和它们的嵌段共聚物,聚烯烃,聚酯,不饱和聚酯,乙烯基酯,聚己内酯,聚醚,和聚酰胺。环氧化物,氰酸酯和多官能的丙烯酸酯类是尤其有用的。可使用催化剂或固化剂,其中包括潜固化剂,控制粘合剂的固化动力学。用于环氧树脂的有用的固化剂包括,但不限于,双氰胺(DICY),己二酸二酰肼,2-甲基咪唑和它的包封产品,例如获自AsahiChemicalIndustry的液体双酚A环氧树脂中的NovacureHX的分散液,胺,例如乙二胺,二亚乙基三胺,三亚乙基四胺,BF3胺加合物,获自AjinomotoCo.,Inc的Amicure,锍盐,例如二氨基二苯基砜,对羟基苯基苄基甲基锍六氟锑酸盐。也可使用偶联剂,其中包括,但不限于,钛酸酯,锆酸酯和硅烷偶联剂,例如环氧丙氧丙基三甲氧基硅烷和3-氨基丙基三甲氧基硅烷,以改进ACF的耐久性。可在S.Asai等人的J.Appl.Polym.Sci.,56,769(1995)中找到固化剂和偶联剂对环氧-基ACF性能的影响。整篇论文在本文中通过参考全文引入。

对于本发明的一个实施方案来说,合适的导电粒子具有窄粒度分布,且标准偏差小于约10%,优选小于约5%,甚至更优选小于约3%。粒度范围优选为约1μm-约250μm,更优选约2μm-约50μm,甚至更优选约2μm-约6μm。选择微孔和导电粒子的尺寸,以便每一微孔具有有限的空间容纳仅仅一个导电粒子。为了促进粒子填充和转移,采用具有倾斜壁且顶部开口较底部开口宽的微孔,正如Liang'700中所示。

尤其优选含聚合物芯和金属壳的导电粒子。有用的聚合物芯包括,但不限于,聚苯乙烯,聚丙烯酸酯类,聚甲基丙烯酸酯类,聚乙烯基树脂,环氧树脂,聚氨酯,聚酰胺,酚醛,聚二烯烃,聚烯烃,氨基塑料,例如三聚氰胺甲醛树脂,脲甲醛树脂,苯并胍甲醛和它们的低聚物,共聚物,共混物或复合材料。若复合材料用作芯,则碳,氧化硅,氧化硅,BN,TiO2和粘土的纳米粒子或纳米管优选作为芯内的填料。用于金属壳的合适材料包括,但不限于,Au,Pt,Ag,Cu,Fe,Ni,Sn,Al,Mg和它们的合金。具有互穿金属壳的导电粒子,例如Ni/Au,Ag/Au,或Ni/Ag/Au对于最佳的硬度,导电率和耐腐蚀性来说是尤其有用的。具有刚性尖峰的粒子,例如Ni,碳,石墨,通过渗透到腐蚀薄膜(若存在的话)内,在改进对腐蚀敏感的连接电极的可靠度方面是有用的。

可例如通过在美国专利Nos.4,247,234,4,877,761,5,216,065中教导的种子乳液聚合,和在Adv.,ColloidInterfaceSci.,13,101(1980);J.Polym.Sci.,72,225(1985)和El-Aasser和Fitch等人的"FutureDirectionsinPolymerColloids",第355页(1987),MartinusNijhoffPublisher中描述的Ugelstad溶胀粒子工艺,制备可用于本发明的窄分散的聚合物粒子。在本发明的一个优选实施方案中,直径约5μm的单分散的聚苯乙烯胶乳粒子用作可变形的弹性芯。在温和搅拌下在甲醇中首先处理该粒子,去除过量的表面活性剂,并在聚苯乙烯胶乳粒子上生成微孔表面。如此处理过的粒子然后在含PdCl2,HC1和SnCl2的溶液内活化,接着洗涤并用水过滤,去除Sn4+,然后在90℃下,浸没在包含Ni络合物和磷酸二氢盐的无电镀Ni溶液(例如来自SurfaceTechnologyInc,Trenton,N.J.)中约30分钟-约50分钟。通过电镀溶液的浓度和电镀条件(温度和时间),来控制镀Ni的厚度。

然后,在约90℃下,将Ni涂布的胶乳粒子置于包含四氯金酸(hydrogentetrachloroaurate)和乙醇的浸渍Au电镀溶液(例如来自EnthoneInc.)中约10分钟-约30分钟,形成总的金属(Ni+Au)厚度为约1μm的互穿Au/Ni壳。用水洗涤Au/Ni电镀胶乳粒子,并被用于射流填充工艺。在例如美国专利No.6,906,427(2005),美国专利No.6,770,369(2004),美国专利No.5,882,802(1999),美国专利No.4,740,657(1988),美国专利申请20060054867,和Chem.Mater.,11,2389-2399(1999)中教导了通过无电和/或电镀,在粒子上涂布导电壳的方法。

在例如美国专利Nos.6,274,508,6,281,038,6,555,408,6,566,744和6,683,663中公开了IC晶片或焊球在显示材料的基底或网的凹陷区域或孔内的射流组装。在例如美国专利Nos.6,672,921,6,751,008,6,784,953,6,788,452,和6,833,943中公开了在压花网的微杯内电泳或液晶流体的填充和顶部密封。在例如美国专利Nos.5,437,754,5,820,450和5,219,462中还公开了通过填充到压花载体网的凹陷内部而制备具有精确间隔的研磨物,包含在可硬化粘合剂前体内分散的多个研磨粒子的研磨复合浆液。所有前述美国专利在本文中通过参考全文引入。在以上提及的现有技术中,例如通过压花,冲压,或平版印刷工艺,在基底上形成凹陷,孔,或微杯。然后将各种材料填充到凹陷或孔内以供各种应用,其中包括有源基体薄膜晶体管(AMTFT),球栅阵列(BGA),电泳和液晶显示。

已经详细地并通过参考本发明的具体实施方案,描述了本发明,但显而易见的是,在没有脱离下述权利要求的精神和范围的情况下,许多变化和改性是可能的。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号