首页> 中国专利> 一种瞬态光栅衰减动力学的瞬态饱和吸收光谱测试方法

一种瞬态光栅衰减动力学的瞬态饱和吸收光谱测试方法

摘要

一种瞬态光栅衰减动力学的瞬态饱和吸收光谱测试方法,代替传统的瞬态光栅衰减动力学的衍射测试方法,能极大地提高测试灵敏度和信噪比,并能同时测量两个输运参数:扩散系数和迁移率,在半导体动态输运光学测试领域具有应用价值。其特点是在瞬态光栅后设置一个与其周期和光栅条纹取向均一致的黑/白透射光栅,并与其尽量贴近。时间延迟探测光透过瞬态光栅和黑/白透射光栅,只有与黑/白光栅中白缝对应的部分探测光射出,实现了对瞬态光栅的局部周期采样。透射探测光的瞬态功率变化的时间延迟扫描曲线反映了瞬态光栅的衰减动力学。使用不同偏振态的探测光,能测试瞬态电子浓度光栅、瞬态电子自旋光栅和瞬态电子自旋浓度光栅的衰减动力学。

著录项

  • 公开/公告号CN101806722A

    专利类型发明专利

  • 公开/公告日2010-08-18

    原文格式PDF

  • 申请/专利权人 中山大学;

    申请/专利号CN201010123758.6

  • 发明设计人 赖天树;陈科;王文芳;

    申请日2010-03-11

  • 分类号G01N21/31;G01J3/42;G01J3/18;

  • 代理机构

  • 代理人

  • 地址 510275 广东省广州市新港西路135号

  • 入库时间 2023-12-18 00:39:50

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2011-08-31

    授权

    授权

  • 2010-10-06

    实质审查的生效 IPC(主分类):G01N21/31 申请日:20100311

    实质审查的生效

  • 2010-08-18

    公开

    公开

说明书

技术领域

本发明涉及一种瞬态光栅衰减动力学的光学测试方法。其特点是在瞬态光栅后放置一个与其同周期、取向一致的黑/白透射光栅。探测光同时透过两个光栅,实现对瞬态光栅的局部周期采样。其透射光功率随时间的变化反映了瞬态光栅的衰减动力学。属半导体动态输运光学测试技术领域。

背景技术

瞬态光栅指寿命短暂的一种空间周期调制分布。如周期调制分布的光强瞬间激发半导体,在半导体中产生载流子浓度空间周期分布,称为瞬态载流子光栅;光强度均匀,但圆偏振度空间周期调制分布的光场瞬间激发半导体,能在半导体中产生电子自旋极化度空间周期分布,称为瞬态电子自旋光栅。这些瞬态光栅的衰减动力学反映了载流子及其自旋的复合与输运动力学,因而被广泛用于输运动力学测试,获取输运参数,如扩散系数。目前广泛使用的瞬态光栅衰减动力学测试方法是光栅衍射法,即一束探测光透过瞬态光栅产生衍射,测试衍射光功率随时间的变化,获得瞬态光栅的衰减动力学。然而,瞬态光栅衍射测试法具有灵敏度低、寻找衍射信号困难等缺点。为了提高衍射法测试灵敏度,国际上发展了衍射信号的外差干涉放大技术,即引入一束与衍射信号光空间和时间上重叠的附加光束,两者干涉信号强度正比于附加光束强度,因而,通过增加附加光束的强度就能获得增益。然而,这种外差放大技术又增加了实验设备的复杂性和实验操作的难度,因为增加了一束附加光,并要调节其与衍射信号光时间和空间重叠是不容易的。

已有报道表明,对同一瞬态光栅,其饱和吸收感应的探测光的透射功率变化是其衍射信号功率的200倍以上。所以,基于饱和吸收效应的瞬态光栅测试技术应该能极大地提高瞬态光栅衰减动力学的测试灵敏度。另一方面,瞬态光栅衍射测试法只能获得载流子的扩散信息,或者说只能测量载流子或自旋的扩散系数,而不能测试迁移输运,或者说不能测量电荷或自旋的迁移率。然而,半导体物理学中要验证爱因斯坦关系是否成立或正确与否,需要同时测量扩散系数与迁移率。所以,发明高灵敏度的、实验装置与操作相对简单的、能够同时测量瞬态光栅的扩散和迁移输运动力学的测试方法,对半导体物理与器件发展都是重要的,具有广泛的应用价值。本发明正是这样一种测试技术。

发明内容

本发明发展了一种瞬态光栅的局部周期采样瞬态饱和吸收光谱测试技术,其实验测试原理如图1所示,实验装置结构与传统的瞬态光栅衍射测试法相同,只是在测试样品8后增加了一个一维黑/白透射光栅9。泵浦光脉冲4和5通过透镜7聚焦、迭加在样品8上。迭加光场形成强度或圆偏振度空间周期分布的光场。此光场激发半导体样品8,则在样品内产生瞬态载流子浓度光栅或自旋光栅。光栅9与此瞬态光栅具有相同的周期和光栅线取向,并尽量接近样品8,所以,它的每一条透射缝对应瞬态光栅中相同的局部区域。时间延迟可调的探测光脉冲6透过瞬态光栅和光栅9后,则只能探测瞬态光栅中与光栅9的透射缝(白色区)对准部分的瞬态光栅(以下简称“亮栅区”)的信息,而与光栅9的不透光缝(黑色区)对准的瞬态光栅部分(以下简称“暗栅区”)的信息不能被测量(探测光被阻挡)。所以,光栅9实现了对瞬态光栅的局部周期采样,称其为采样光栅。然而,由于输运效应,“亮栅区”与“暗栅区”之间的信息会相互交换,从而引起“亮栅区”的信息变化,进而导致探测光的透射功率变化。所以,实验测量探测光脉冲6的透射功率随延迟时间的变化,则反映了瞬态光栅的输运动力学。通过分析此透射功率随延迟时间变化信号,就能获得载流子或自旋的输运参数,如扩散系数、迁移率。需要特别强调的是,正因为采样光栅9的引入,透射功率变化才能够反映输运信息,否则,不能够;因为如果没有采样光栅9,探测光束6探测整个瞬态光栅。这时,瞬态光栅中输运尽管能导致不同区域间的信息交换,但并不改变整个被探测的瞬态光栅中的总信息。所以,并不影响探测光束6的透射功率变化。由于瞬态光栅的多样性,本发明具体包括如下三部分内容:

一、瞬态电子浓度光栅衰减动力学测量

当图1中光束4和5为平行线偏振光时,它们在样品8上相干迭加,形成强度周期分布的光栅。此强度光栅激发样品,则在样品内激发瞬态电子浓度光栅。此电子浓度光栅的寿命由电子-空穴复合寿命决定。

为了保证采样光栅9与瞬态电子浓度光栅具有相同的周期和一致的光栅条纹取向。将采样光栅9安装在一个四维光学调节架上,其中三维平动、一维旋转。当移动光栅9接近瞬态光栅时,在光栅后的屏上应该能观察到平行亮条纹(暂时阻挡探测光6),此即为莫尔条纹。旋转光栅9,直至莫尔条纹间距达到最大,这时候瞬态光栅与采样光栅9的栅线就平行了。然后,调节透镜前的平行泵浦光束4和5之间的距离,使莫尔条纹间距继续增大,直至无穷、条纹消失。这时,瞬态光栅具有与采样光栅9相同的周期和取向。

让线偏振探测光6透过瞬态电子浓度光栅和采样光栅9,到达光电探测器10。用锁相放大器测量探测器10输出的电信号变化幅度随延迟时间的变化,即S(t)。则实现了电子浓度瞬态光栅的衰减动力学测量。

设置XY坐标系在样品面上,X轴垂直光栅条纹方向,则理论上可以导出此衰减动力学信号由如下方程描述:

S(t)=A[1+Msinc(aΛ)sin(2πΛ(x0+μaEt))exp(-(2πΛ)2Dat)]exp(-t/Tr)---(1)

式中A为拟合常数,M为瞬态光栅的调制度,a和Λ分别为采样光栅的透射缝宽度和周期;μa和Da分别为电子的双极迁移率和扩散系数;Tr为电子的复合寿命;E为在样品面内沿垂直光栅条纹方向施加的电场强度;x0(<Λ)为采样光栅9的透射缝中心坐标。

用方程(1)拟合本发明方法实验测试的瞬态电子浓度光栅感应的探测光的饱和吸收衰减(等效透射衰减)动力学信号S(t),则能够获取电子的双极扩散系数Da和迁移率μa,进而验证爱因斯坦关系。

二、瞬态电子自旋光栅衰减动力学测量

首先,重复发明内容一中的调节瞬态光栅与采样光栅9具有相同的周期和平行条纹取向的实验操作步骤。然后,转动光束4的线偏振面90度(不会改变瞬态光栅周期与取向),则光束4和5为正交线偏振的。它们在样品面上迭加,形成光强度均匀,但圆偏振度空间周期调制的光场。此光场激发半导体(如GaAs)样品8,则能在样品面内产生均匀分布的电子浓度,但电子的自旋极化度却是周期变化的,称为瞬态电子自旋光栅。设置时间延迟探测光6为左或右旋圆偏振态,分别使它们透过瞬态自旋光栅和采样光栅9,测试各自的透射功率变化的时间延迟扫描曲线,分别记为SL(t)和SR(t)。求它们的差S(t)=SR(t)-SL(t),即为圆二色饱和吸收差信号。此信号反映了瞬态电子自旋光栅的衰减动力学。

设置XY坐标系在样品面上,X轴垂直光栅条纹方向,则理论上可以导出瞬态电子自旋光栅的圆二色饱和吸收差信号衰减动力学由如下方程描述:

S(t)=Asinc(aΛ)sin(2πΛ(x0+μsEt))exp(-(2πΛ)2Dst)]exp(-tTrs)---(2)

式中μs和Ds分别为电子的自旋迁移率和扩散系数;Trs为电子的有效自旋弛豫时间。其余参数与方程(1)中相同。

用方程(2)拟合本发明内容实验测试的瞬态电子自旋光栅的圆二色饱和吸收差衰减动力学信号S(t),则能够获得电子自旋的扩散系数Ds和迁移率μs,进而验证自旋电子学中爱因斯坦关系的有效性。

三、瞬态电子自旋浓度光栅衰减动力学测量

首先,重复发明内容一中的调节瞬态光栅与采样光栅9具有相同的周期和平行条纹取向的实验操作步骤。然后,设置泵浦光束4和5为同旋向圆偏振态(不会改变瞬态光栅周期与取向),它们在样品8上相干迭加,形成圆偏振态的强度周期分布的光场。此光场激发半导体样品8,在样品内产生瞬态电子自旋浓度光栅,即电子浓度空间周期分布,类似发明内容一中的瞬态电子浓度光栅,但此处电子自旋是极化的(即任一点处相反自旋取向的电子浓度不同)。这样的瞬态光栅衰减动力学既受电子浓度输运影响,又受电子自旋输运影响,所以称为自旋双极输运。

设置时间延迟探测光6为左旋圆偏振态,并通过瞬态电子自旋浓度光栅和采样光栅9,由光电探测器10测量其透射功率随延迟时间的变化,记测试信号为SL(t)。然后,设置光束6为右旋圆偏振态,重复上述测量,记测量信号为SR(t)。求差S(t)=SR(t)-SL(t),即为圆二色饱和吸收差信号,它反映了瞬态电子自旋浓度光栅的衰减动力学,涉及自旋双极输运。

设置XY坐标系在样品面上,X轴垂直光栅条纹方向,则理论上可以导出瞬态电子自旋浓度光栅的圆二色饱和吸收差信号由如下方程描述:

S(t)=A[1+Psinc(aΛ)sin(2πΛ(x0+μasEt))exp(-(2πΛ)2Dast)]exp(-t/Trs)---(3)

式中μas和Das分别为电子的自旋双极迁移率和扩散系数;Trs为电子的有效自旋弛豫时间。P为瞬态电子自旋浓度光栅的自旋极化参数;其余参数与方程(1)中相同。

附图说明

图1瞬态光栅衰减动力学的瞬态饱和吸收光谱测试原理图

图26aAs量子阱的电子自旋弛豫动力学的瞬态圆二色饱和吸收光谱测试结果

图3GaAs量子阱中瞬态自旋光栅衰减动力学的局部周期采样瞬态圆二色饱和吸收光谱测试结果

图1中,1为飞秒激光器;2为1输出的飞秒脉冲激光束;3为通常的非共线时间分辨泵浦-探测实验装置,主要包括麦克尔逊非共线干涉仪、光学延迟线和光学斩波器;光学斩波器设置在泵浦光路中,而光学延迟线在探测光路中;激光束2通过3后,被分成强的泵浦光和弱的探测光束6,而强的泵浦光束由分束片再次分成两束强度和光程相等的泵浦光束4和5;4,5和6三束光平行,通过透镜7聚焦在其后焦平面上的同一点。它们各自的偏振态由1/2波片(线偏振面旋转90度)或1/4波片(产生左、右旋圆偏振态)调节。样品8位于7的后焦平面上;9为黑/白一维透射光栅,用于对样品8中的瞬态光栅局部周期采样。10为光电探测器,测量探测光束6的透射功率变化。

图2中,1为图1中阻挡泵浦光束4,并去除光栅9后,光束5和6均为右旋圆偏振态时测量的GaAs量子阱样品8的瞬态饱和吸收变化(正比于透射变化)的时间延迟扫描曲线;2为探测光束6为左旋圆偏振态时测量的GaAs量子阱的瞬态饱和吸收变化的时间延迟扫描曲线;曲线3中空心圆曲线为1与2之差,而实线为单指数衰减函数对空心圆曲线的最小二乘拟合结果,给出衰减时间常数为49.8±0.4ps。

图3中,1为图1中泵浦光束4和5为正交线偏振态,在GaAs量子阱样品8中激发起周期为4μm的瞬态电子自旋光栅,样品面内外加电场E=0,采样光栅9的透射缝宽度为1μm时,右旋圆偏振态探测光束6透过瞬态自旋光栅和采样光栅9的瞬态透射功率变化的时间延迟扫描曲线;2为左旋圆偏振态探测光束6透过瞬态自旋光栅和采样光栅9的瞬态透射功率变化的时间延迟扫描曲线;3中空心圆曲线为1与2之差,而实线曲线为本发明中方程(2)对空心圆曲线的最小二乘拟合结果,给出电子自旋扩散系数Ds=100±6cm2/s。

具体实施方式

本发明已具体实施,应用于GaAs量子阱中瞬态电子自旋光栅衰减动力学测量,并利用我们发展的理论模型拟合实验数据,获得了电子自旋扩散系数。实验所用黑/白透射采样光栅之参数为a=1μm,Λ=4μm。

实验装置原理图如图1所示。所使用激光器(1)为钛宝石自锁模飞秒激光器,其输出脉冲宽度约150fs,脉冲重复率为90MHz,中心波长调谐到838nm,与GaAs量子阱的重空穴激子能量共振;泵浦光束4和5的功率各为3mW,而探测光束6的功率为1.5mW。样品上未施加面内电场,即E=0。

首先,阻挡泵浦光束4,并去除采样光栅9。设置泵浦光束5和探测光束6同为右旋圆偏振光,测试探测光6透过GaAs量子阱样品8的透射功率变化的时间延迟扫描曲线,如图2中曲线1所示。然后,设置探测光6为左旋圆偏振光,再次测量其透射功率变化的延迟时间扫描曲线,如图2中曲线2所示。曲线1与2之差如曲线3中空心圆曲线所示,而实线为其之单指数衰减函数的最小二乘拟合结果,给出电子自旋的有效弛豫时间为Trs=49.8±0.4ps。

然后,设置泵浦光4和5为平行线偏振光,在样品8平面上产生干涉条纹光栅;移动采样光栅9尽量接近样品8,在其后的观察屏上能看到莫尔条纹。旋转光栅9,使莫尔条纹间距增大,直至最大时停止,然后再调节泵浦光束4和5之间的平行距离,使莫尔条纹间距继续增加,直至无穷,则实现了瞬态光栅与采样光栅9同周期和光栅条纹平行。然后,旋转泵浦光束4的偏振面90度,这时,样品面上的亮暗条纹光栅变成强度均匀,但圆偏振度周期变化的光栅(通过偏振片能观察到亮暗条纹);此光场激发GaAs量子阱样品8,则产生瞬态电子自旋光栅。设置探测光6为右旋圆偏振态,并测量其透过瞬态电子自旋光栅和采样光栅9后的瞬态功率变化的时间延迟扫描曲线,如图3中曲线1所示。然后,设置探测光6为左旋圆偏振态,再次测量其瞬态透射功率变化的时间延迟扫描曲线,如图3中2所示。1与2之差如曲线3中空心圆曲线所示。使用方程(2)最小二乘拟合之(设置Trs=49.8±0.4ps),结果如曲线3中实线所示。给出电子自旋扩散系数Ds=100±6cm2/s。此结果与目前国际上使用自旋光栅衍射法测试的自旋扩散系数~120cm2/s基本一致。小的差别可能来自样品差别,如阱宽度。显示本发明测试方法的可靠性和有益效果。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号