首页> 中国专利> 确定混合动力传动系统的惯性作用的方法

确定混合动力传动系统的惯性作用的方法

摘要

本发明涉及一种确定混合动力传动系统的惯性作用的方法,其中控制混合动力传动系统的方法,其基于确定的用于连续可变的操作档位状态的惯性作用,该方法包括监测操作者转矩需求和输出元件的转速,确定用于连续可变操作档位状态的输入元件输入速度的惯性作用,以及基于输入元件输入速度的惯性作用,控制来自电机的电机转矩输出,以满足操作者的转矩需求。

著录项

  • 公开/公告号CN101476620A

    专利类型发明专利

  • 公开/公告日2009-07-08

    原文格式PDF

  • 申请/专利权人 通用汽车环球科技运作公司;

    申请/专利号CN200810188773.1

  • 发明设计人 A·H·希普;K·Y·金;

    申请日2008-11-04

  • 分类号F16H61/00;F16H61/32;F16H59/14;F16H59/36;

  • 代理机构中国专利代理(香港)有限公司;

  • 代理人原绍辉

  • 地址 美国密执安州

  • 入库时间 2023-12-17 22:14:42

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-04-29

    授权

    授权

  • 2009-09-02

    实质审查的生效

    实质审查的生效

  • 2009-07-08

    公开

    公开

说明书

相关申请的交叉引用

本申请要求2007年11月4号提交的美国临时申请No.60/985,274的优先权,其作为参考合并于此。

技术领域

本申请涉及混合动力传动系统的控制系统。

背景技术

本部分的说明仅提供与本申请相关的背景信息,并不构成现有技术。

熟知的混合动力传动结构可以包括多个转矩生成设备,其包括内燃机和非内燃机,例如,电机,其可通过变速器设备将转矩传送到输出元件。一个典型混合动力系统包括双模式、复合-分解、电动机械变速器和输出元件,变速器可利用输入元件接收来自原动机动力源的牵引转矩,动力源优选地为内燃机。输出元件可与机动车的驱动系统操作地相连以向其传送牵引转矩。用作电动机或者发电机的机械,可生成独立于来自内燃机的转矩输入的变速器的转矩输入。机械可通过车辆驱动系统将车辆的动能转换成可存储在能量存储设备的能量。控制系统监测来自车辆和操作者的多个输入,并提供混合动力传动系统的操作控制,包括控制变速器操作状态和换档、控制转矩生成设备和调节能量存储设备和机械间的功率转换以管理变速器的输出,包括转矩和旋转速度。

发明内容

基于连续可变操作档位状态的确定的惯性作用控制混合动力传动系统的方法,包括监测操作者转矩要求和输出元件的旋转速度,确定对于连续可变操作档位状态的输入元件的惯性作用,和控制来自电机的电动机转矩输出以满足操作者基于对于输入元件的输入速度的惯性作用的转矩要求。

附图说明

参照附图,通过例子,现将对一个或多个实施例予以描述,其中:

图1是根据本申请的典型混合动力传动系统的示意图;

图2是根据本申请的控制系统和混合动力传动系统的示例性结构的示意图;

图3-9是根据本申请的控制系统的示意流程图;

图10是根据本申请的动力流示意图;

图11是根据本申请的控制方案的示意流程图;和

图12是根据本申请的数据曲线。

具体实施方式

现参照附图,其中显示的仅仅是用于某典型实施例的说明目的,并不是为了限定本申请的目的。图1和2描绘了示例性的电动机械混合动力传动系统。在图1中表示了根据本申请的典型的电动机械混合动力传动系统,其包括与发动机14和扭矩生成机构可操作连接的双模式、复合—分解电动机械混合动力变速器10,扭矩生成机构包括第一和第二电机(‘MG-A’)56和(‘MG-B’)72。发动机14和第一及第二电机56及72均产生能传递给变速器10的机械能。由发动机14和第一及第二电机56及72所生成和传送给变速器10的动能被称为输入及电机扭矩,这里称之为为TI、TA和TB,和各自的速度,这里分别称之为为NI、NA和NB

该示例性发动机14包括多气缸内燃机,其可在多个状态下选择性地操作以将扭矩通过输入轴12传递给变速器10,并且可以是点燃式或压燃式发动机。该发动机14包括可操作的接合变速器10的输入轴12的曲轴(未示出)。转速传感器11监测输入轴12的转速。由于发动机14和变速器10之间位于输入轴12之上的扭矩成本元件的存在,例如液压泵(未示出)和/或扭矩控制装置(未示出),因此从发动机14输出的动力,包括转速和发动机扭矩不同于变速器10的输入速度NI与输入扭矩TI

该示例性变速器10包括3个行星齿轮组24、26和28,和4个可选择接合的扭矩传递装置,例如离合器C1 70、C2 62、C3 73和C4 75。如这里所使用的,离合器指任何类型的摩擦扭矩传递装置,其包括例如单个或组合的盘式离合器或离合器组、带式离合器和制动器。液压控制管路42,优选地由变速器控制模块(此后称‘TCM’)17控制,其可操作的控制离合器状态。离合器C2 62和C475优选地包括液压控制的旋转摩擦离合器。离合器C1 70和C3 73优选地包括能选择性地选择性地固定于变速箱68的液压控制的固定装置。各离合器C1 70、C2 62、C3 73和C4 75优选地为使用液压、通过液压控制管路42可选择地接受压缩液压流体。

该第一及第二电机56及72优选地包括三相交流电机,均包括定子(未示出)和转子(未示出),以及各自的分相器80和82。用于各电机的电机定子固定于变速箱68的外部,并包括具有从其中延伸的螺旋电线圈的定子铁心。用于第一电机56的转子支撑于毂衬齿轮,该齿轮通过第二行星齿轮组26可操作连接于轴60。用于第二电机72的转子固定连接于套轴毂66。

各分相器80和82优选地包括分相器定子(未示出)和分相器转子(未示出)。分相器80和82合适地布置并安装于第一及第二电机56及72之一上。该分相器转子80和82之一的定子可操作连接于用于第一及第二电机56及72的定子之一。该分相器转子可操作连接于用于相应第一及第二电机56及72的转子。各分相器80和82信号地并可操作地连接于变速器动力转换器控制模块(此后称‘TPIM’)19,并且均传感和监测分相器转子相对于分相器定子的转动位置,因此监测第一及第二电机56及72之一的转动位置。此外,该分相器80和82的输出信号被转译以提供第一及第二电机56及72的转速,即,分别为NA和NB

变速器10包括输出元件64,例如轴,其可操作的连接于用于车辆的驱动系统90(未示出),以提供输出动力到传递给车轮93的驱动系统90,车轮之一表示于图1中。输出元件64的动力输出以输出转速NO和输出扭矩TO为特征。变速器输出速度传感器84监测输出元件64的转速和转动方向。每一车轮93优选地配有摩擦式制动器94和适用于监测车轮速度的传感器(未示出),其输出由图2所述的分布式控制模块系统的控制模块监测,以决定车速和用于制动控制,牵引控制和车辆加速控制的绝对以及相对车速。

来自发动机14的输入扭矩及来自第一及第二电机56及72的电机扭矩(分别为TI、TA和TB)由燃油或电能储存装置(此后称‘ESD’)74中储存的电压的能量转换而生成。该ESD74通过DC传递导体27高压DC接合于TPIM19。该传递导体27包括触点开关38。当触点开关38关闭时,在正常工作下,电流可在ESD74和TPIM19间流动。当触点开关38打开时,ESD74和TPIM19间的电流被中断。该TPIM19通过传递导体29传输电能到第一电机56和从其接收电能,并且该TPIM19类似地通过传递导体31传输电能到第二电机72和从其接收电能,以满足第一及第二电机56及72响应电机扭矩指令的TA和TB的扭矩要求。电流根据ESD74是充电还是放电传输到ESD74和从其输出。

该TPIM19包括一对动力变换器(未示出)和,配置成用于接收电机扭矩指令和为了提供电机驱动或再生功能以满足指令的电机扭矩TA和TB而根据电机扭矩指令控制变换器状态的各自电机控制模块(未示出)。该动力变换器包括已公知的辅助三相动力电子装置,并且其均包括多个绝缘栅双极晶体管(未示出),该双极晶体管用于通过高频转换将来自ESD74的DC电压转换为AC电压,以分别为第一及第二电机56及72提供动力。该绝缘栅双极晶体管形成配置成接收控制指令的开关模式电源。这即是通常的用于各三相电机各相的一对绝缘栅双极晶体管。绝缘栅双极晶体管的状态受控制以提供电机驱动机械动力生成或电能再生功能。该三相逆变器通过DC传递导体27接收或提供DC电能,并将电能传输到三相AC电源或从三相AC电源输出,其分别通过传递导体29、31传递到第一及第二电机56及72或从第一及第二电机56及72传递出以用于作为电动机或发电机的运转。

图2是分布式控制模块系统的示意性框图。随后所述的元件包括整车控制结构的子集,并且提供图1所述的示例性混合动力传动系统的协同系统控制。该分布式控制模块系统综合相关信息和输入,并且执行运算以控制多个致动器以实现控制目标,其包括与燃油经济性、排放、性能、驱动性和硬件保护,包括ESD74的电池以及第一和第二电机56和72相关的目标。分布式控制模块系统包括发动机控制模块(以下称‘ECM’)23,TCM17,电池组控制模块(以下称‘BPCM’)21和TPIM19。混合控制模块(以下称‘HCP’)5提供对ECM23,TCM17,BPCM21和TPIM19的监督控制和协调。用户界面(‘UI’)13可操作连接于多个装置,通过该装置车辆操作者控制或指引电动机械混合动力传动系统的运作。该装置包括加速踏板113(‘AP’)、操作者制动踏板112(‘BP’)、变速器档位选择器114(‘PRNDL’)、车速巡航控制(未示出)。变速器档位选择器114具有不连续数量的操作者可选位置,包括输出元件64的转动方向以实现前进或后退之一。

以上所述的控制模块通过局域网(以下称‘LAN’)总线6与其他控制模块、传感器和致动器互通信息。LAN总线6允许多个控制模块间的运行参数状态和致动器指令信号的结构化通信。所采用的特定通信协议为专用的。LAN总线6和合适的协议提供以上所述的控制模块和提供诸如防抱死制动、牵引控制和车辆稳定性等功能的其他模块间的鲁棒信息和多模块接口连接。多种通信总线可用于提高通信速度和提供一定等级的信号冗余度和整体性。各个控制模块间的通信可通过直接连接,例如,串行外设接口(‘SPI’)总线(未示出)来起作用。

HCP5为混合动力传动系统提供监督控制,以用于ECM23、TCM17、TPIM19和BPCM21的协同作用。基于来自于使用者界面13和混合动力系统,包括ESD74的多个输入信号,HCP5决定操作者扭矩要求、输出扭矩指令、发动机输入扭矩控制、所用变速器10的离合器C1 70、C2 62、C3 73和C4 75的离合器扭矩,以及用于第一和第二电机56和72的电机扭矩指令TA和TB

ECM23可操作地连接于发动机14,作用以从传感器取得数据,以及通过多个分离的线缆控制发动机14的致动器,简单表示为集合的双向接口电缆35。ECM23从HCP5接收发动机输入扭矩指令。ECM23决定发动机实际输入扭矩T1,以基于所监控的发动机速度和负载,在该点及时提供给变速器10,该ECM23与HCP5通讯。该ECM23监控来自转速传感器11的输入,以确定发动机给输入轴12的输入速度,该速度被转化至变速器输入速度NI。该ECM23监控来自传感器(未示出)的输入以确定其他发动机运行参数的状态,包括例如歧管压力、发动机冷却剂温度、周围气温和周围气压。例如,从歧管压力或可替代的从所监控的操作者对加速踏板113的输入,该发动机负载可被确定。该ECM23产生和传输指令信号以控制发动机致动器,包括,例如燃油喷射器、点火模块和节气门控制模块,这些都未示出。

该TCM17可操作地连接于变速器10并监控来自传感器(未示出)的输入,以确定变速器的运行参数状态。该TCM17产生和传输指令信号,以控制变速器10,包括控制液压管路42。从TCM17到HCP5的输入包括用于各离合器,例如C1 70、C2 62、C3 73和C4 75的估算的离合器扭矩,和输出元件64的输出转速NO。其他致动器和传感器可用于提供从TCM17到HCP5的用作控制目的的附加信息。该TCM17监控来自压力开关(未示出)的输入,并且可选择的致动压力控制电磁线圈(未示出),并且转换液压管路42的电磁线圈(未示出),以可选择地致动多个离合器C1 70、C2 62、C3 73和C4 75,来实现如下所述的多个变速器操作档位状态。

该BPCM21信号连接于传感器(未示出),以监控ESD74,包括电流和电压参数状态,以向HCP5提供ESD74的电池参数状态的指示信息。该电池参数状态优选地包括电池荷电状态、电池电压、电池温度和所获电池功率,指示为PBAT_MIN到PBAT_MAX的范围。

制动控制模块(以下称‘BrCM’)22可操作地连接于各车轮93的摩擦制动器94。该BrCM22监控操作者对制动踏板112的输入,并生成用于控制摩擦制动器94的控制信号并传输控制信号到HCP5,以基于此操作该第一和第二电机56和72。

各控制模块ECM23、TCM17、TPIM19、BPCM21和BrCM22优选地是通用目的的数字计算机,其包括微处理器或中央处理单元、包括只读存储器(‘ROM’)、随机存取存储器(‘RAM’)、电子可擦写只读存储器(‘ERROM’)的存储介质、高速时钟、模拟/数字(‘A/D’)和数字/模拟(‘D/A’)电路、输入/输出电路和装置(‘I/O’)及合适的信号条件和缓冲电路。各控制模块包括一套控制算法,包括存储介质之一所储存的并用于提供每个计算机的各种功能的常驻程序指令和标定。控制模块之间的信息传递优选地使用LAN总线6和串行外设接口总线而实现。控制算法在预先设定的循环期间执行从而使每一个算法在每个循环中至少执行一次。存储在非易失存储设备中的算法由中央处理单元之一来执行,以监控来自感应设备的输入并运用预定的标定执行控制和诊断程序以控制致动器的运作。循环以规则的时间间隔执行,比如说在混合动力传动系统的运作中每隔3.125、6.25、12.5、25和100毫秒。可替换地,算法的执行也可以响应于事件的发生。

示例性混合动力传动系统可选择性操作在可用发动机状态与变速器操作档位状态描述的几种状态之一,发动机状态包括发动机工作状态(‘ON’)和发动机停止状态(‘OFF’),变速器操作档位状态包括多个固定档位和连续可变操作模式,描述参照如下的表格1。

表1

 

描述发动机状态变速器      操作区段状态应用离合器M1_Eng_OffOFFEVT模式1C1 70M1_Eng_OnONEVT模式1C1 70G1ON固定传动比1C1 70 C4 75G2ON固定传动比2C1 70 C2 62M2_Eng_OffOFFEVT模式2C2 62M2_Eng_OnONEVT模式2C2 62G3ON固定传动比3C2 62 C4 75G4ON固定传动比4C2 62 C3 73

每一变速器操作档位状态在表格中有描述,且显示了每一操作档位状态所使用的特定的离合器C1 70、C2 62、C3 73及C4 75。第一连续可变模式,即,EVT模式1或者M1,仅为了固定第三行星齿轮组28的外部齿轮元件,通过使用离合器C170而选择。发动机状态可以为ON(‘M1_Eng_On’)或者OFF(‘M1_Eng_Off’)之一。第二连续可变模式,即,EVT模式2或者M2,仅为了将轴60与第三行星齿轮组28的行星架相连接,通过使用离合器C2 62而选择。发动机状态可以为ON(‘M2_Eng_On’)或者OFF(‘M2_Eng_Off’)之一。为了描述目的,当发动机状态为OFF时,发动机输入速度等于每分钟0转(‘RPM’),即发动机曲轴不转动。固定档位操作提供变速器10的输入/输出速度的固定比率的操作,即NI/NO。第一固定档位操作(‘G1’)通过使用离合器C1 70、C4 75而选择。第二固定档位操作(‘G2’)通过使用离合器C1 70、C2 62而选择。第三固定档位操作(‘G3’)通过使用离合器C2 62、C4 75而选择。第四固定档位操作(‘G4’)通过使用离合器C2 62、C3 73而选择。输入/输出速度的固定比率操作随着固定档位操作的增加而增加,这归因于行星齿轮24、26和28的传动比的下降。第一和第二电机56和72的转速,分别为NA和NB,由离合器所限定的机械装置的内部转速所决定,且与输入轴12处所测量得的输入速度成比例。

响应如用户界面13所获的通过加速踏板113和制动踏板112的操作者输入,HCP5和其他控制模块之一或多个决定扭矩指令以控制包括发动机14和第一第二电机56和72的扭矩生成装置,以满足输出元件64处的操作者扭矩需求并传输给驱动系统90。基于来自用户界面13和包括ESD74的混合动力传动系统的输入信号,HCP5确定操作者扭矩要求,从变速器10到驱动系统90的指令的输出扭矩,发动机的输入扭矩,用于变速器10的扭矩传递离合器C1 70、C2 62、C3 73、C4 75的离合器扭矩,以分别用于第一和第二电机56和72的电机转矩,如随后所述。

最终的车辆加速度可受到其他因素的影响,例如道路负荷,道路坡度以及车辆质量。发动机状态和变速器操作档位状态基于混合动力传动系统的运转特性来决定。这包括操作者转矩要求,其通过加速踏板113和制动踏板112传送到前面所述的用户界面13。该变速器操作档位状态和发动机状态根据混合动力传动系统转矩需求来预测,该转矩需求由在电能生成模式或转矩生成模式操作第一和第二电机56和72的指令产生。该变速器操作档位状态和发动机状态可通过优化算法或程序来确定,该优化算法或程序基于操作者动力需求、电池荷电状态,和发动机14以及第一和第二电机56和72的能量效率,来确定优化系统效率。该控制系统基于所执行优化程序的结果控制来自发动机14以及第一和第二电机56和72的转矩输入,并且借此优化系统效率,从而控制燃油经济性和电池充电。此外,可基于元件或系统的故障来确定操作。HCP5监控扭矩生成装置,确定位于输出元件64的来自变速器10的动力输出,要求该动力输出满足操作者扭矩要求,同时满足其他动力传动系统操作需求,例如,给ESD74充电。从以上描述应该知道的是,ESD74和第一和第二电机56和72电力操作地连接,用于两者之间的功率流。此外,发动机14,第一和第二电机56和72,以及电动机械变速器10机械操作地连接,以在其间传递动力,从而生成到输出元件64的功率流。

图3示出了用于控制和管理混合动力传动系统的信号流的控制系统结构,该混合动力传动系统具有多个扭矩生成设备,以下参照图1和2的混合动力传动系统描述,且以可执行的算法和标定的形式存在于以上所述的控制模块中。控制系统结构可适用于可替代的混合动力传动系统,该系统具有多个扭矩生成装置,包括,例如具有发动机和单个电机的混合动力传动系统,具有发动机和多个电机的混合动力传动系统。可替代地,混合动力传动系统可利用非电力扭矩生成机械和能量储存系统,例如液力-机械混合动力变速器(未示出)。

在操作中,操作者对加速踏板113和制动踏板112的输入被监控,以确定操作者扭矩要求。操作者对加速踏板113和制动踏板112的输入包括各个可确定的操作者转矩需求输入,其包括即时加速度输出转矩需求(‘即时加速度输出转矩需求’),预测的加速度输出转矩需求(‘预测的加速度输出转矩需求’),即时制动输出转矩需求(‘即时制动输出转矩需求’),预测的制动输出转矩需求(‘预测的制动输出转矩需求’),以及轴转矩响应类型(‘轴转矩响应类型’)。如此处所用的,术语“加速度”指的是操作者向前推进的需求,优选地当操作者的变速器档位选择器114的选择位置指令车辆操作沿前进方向时,导致车辆速度在当前车辆速度上增加。术语“减速”和“制动”指的是操作者需求优选地导致车辆从当前速度减速。即时加速度输出转矩需求,预测的加速度输出转矩需求,即时制动输出转矩需求,预测的制动输出转矩需求,以及轴转矩响应类型是控制系统的单独输入。此外,发动机14和变速器10的运转被监控,以确定输入速度(‘Ni’)和输出速度(‘No’)。该即时加速度输出转矩需求是基于当前产生的操作者对加速踏板113的输入确定的,并且包括生成优选地用于加速车辆的输出元件64的即时输出转矩的需求。预测的加速度输出转矩需求是基于操作者对加速踏板113的输入确定的,且包括输出元件64上的最优的或优选的输出转矩。在正常运转状态下,例如,当防抱死制动、牵引控制或车辆稳定性控制均没有被指令时,该预测的加速度输出转矩需求优选地等于该即时加速度输出转矩需求。当防抱死制动、牵引控制或车辆稳定性控制中任一被指令时,该预测的加速度输出转矩需求保持优选地输出转矩,同时该即时加速度输出转矩需求响应于关于防抱死制动、牵引控制或车辆稳定性控制的输出转矩而下降。

该即时制动输出转矩需求基于当前产生的操作者对制动踏板112的输出而确定,并且包括在输出元件64上产生即时输出转矩的需求,以对驱动系统90施加作用转矩,其优选地使车辆减速。该预测的制动输出转矩需求包括输出元件64上的最优的或优选的制动输出转矩,其响应于操作者对制动踏板112的输入,该转矩取决于无论操作者对制动踏板112的输入如何,输出元件64上允许产生的最大制动输出转矩。在一个实施例中,产生于输出元件64的最大制动输出转矩被限定为-0.2g。当车速接近0时,无论操作者对制动踏板112的输入如何,该预测的制动输出转矩需求可逐步减小至0。当由操作者指令时,存在该预测的制动输出转矩需求设定为0的操作条件,例如,当操作者设定变速器档位选择器114设定为倒档,并且当分动箱(未示出)被设定为四轮驱动低挡时。

策略控制表(‘策略控制’)310确定优先的输入速度(‘Ni_Des’)和优选发动机状态和变速器操作档位状态(‘混合动力所需档位状态’),其基于输出速度和操作者转矩需求并且基于混合动力传动系统其他运行参数,包括电池功率限制和发动机14、变速器10、第一和第二电机56和72的响应限制。该预测的加速度输出转矩需求和预测的制动输出转矩需求输入到策略控制表310。在每个100ms循环和每个25ms循环中,该策略控制表310优选地通过HCP5来执行。变速器10的所需工作档位状态和从发动机14到变速器10的优选输入速度被输入到换挡执行和发动机启动/停止控制表320。

该换挡执行和发动机启动/停止控制表320指令变速器运转的变化(‘变速器指令’),包括基于动力传动系统的输入和运转而改变操作档位状态。这包括如果该优选操作档位状态不同于通过指令采用离合器C1 70、C2 62、C3 73、C4 75之一或多个和其他变速器指令变化的当前操作档位状态,变速器操作档位状态变化的指令执行。该当前操作档位状态(‘混合动力实际档位状态’)和输入速度曲线(‘Ni_Prof’)可被确定。该输入速度曲线是即将输入速度的预估,并且优选地包括标量参数值,其是用于即将来临循环的目标输入速度。该发动机运转指令和操作者转矩需求是基于变速器操作档位状态的变换过程中的输入速度曲线的。

在控制循环之一期间,策略控制表(‘策略控制与操作’)330被执行,以确定用于操作发动机14的发动机指令(‘发动机指令’),包括基于输出速度、输入速度和操作者转矩需求的从发动机14到变速器10的优选输出转矩,该操作者转矩需求包括即时加速度输出转矩需求,预测的加速度输出转矩需求、即时制动输出转矩需求、预测的制动输出转矩需求,轴转矩响应类型,和当前变速器的操作档位状态。该发动机指令还包括发动机状态,其包括全气缸操作状态和其中一部分发动机气缸停缸和不供给燃料的停缸操作状态之一,以及包括供给燃料状态和燃料切断状态之一的发动机状态。发动机指令包括发动机14的优选的输入转矩和作用于发动机14和输入元件12之间的当前输入转矩(‘Ti’),发动机指令优选地在ECM23中确定。离合器C1 70、C2 62、C3 73、C4 75中任一的转矩(‘Tcl’),包括当前应用的离合器和未利用的离合器优选地在TCM17中确定。

执行输出和电动机转矩的确定表(‘输出和电动机转矩确定’)340以确定来自动力传动系统的优选的输出转矩(‘To_cmd’)。这包括确定电动机转矩指令(‘TA’,‘TB’)以通过控制该实施例中的第一和第二电机56和72而将净指令的输出转矩传递给变速器10的输出元件64以满足操作者转矩需求。输入即时加速度输出转矩需求,即时制动输出转矩需求,发动机14的当前输入转矩,估算的应用的离合器转矩,变速器10当前的操作档位状态,输入速度,输入速度曲线,以及轴转矩响应类型。执行输出和电动机转矩确定表340以确定循环之一中的每次迭代中的电动机转矩指令。输出和电动机转矩确定表340包括算法代码,其通常在6.25ms和12.5ms的循环中规则地执行以确定优选的电动机转矩指令。

控制该混合动力传动系统来将输出转矩传送到输出元件64以作用于驱动系统90,从而当操作者的变速器档位选择器114的选择的位置指令车辆操作沿前进方向时,在车轮93上产生牵引转矩向前驱动车辆,以响应操作者对加速踏板113的输入。类似的,控制该混合动力传动系统来将输出转矩传送到输出元件64以作用于驱动系统90,从而当操作者的变速器档位选择器114的选择的位置指令车辆操作沿后退方向时,在车轮93上产生牵引转矩沿反方向驱动车辆,以响应操作者对加速踏板113的输入。优选的,驱动车辆导致车辆加速,只要输出转矩足以克服车辆上的外部载荷,例如由于道路坡度、空气动力学的载荷及其它载荷。

图4细述了策略优化控制表310的信号流,该表包括策略管理器220,操作档位状态分析器260,状态稳定和仲裁块280以确定优选的输入速度(‘Ni_Des’)和优选的变速器操作档位(‘混合动力所需档位状态’)。策略管理器(‘策略管理器’)220监测输出速度NO,预测的加速度输出转矩需求(‘预测的加速度输出转矩需求’)、预测的制动输出转矩需求(‘预测的制动输出转矩需求’),以及可用的电池功率PBAT_MIN到PBAT_MAX。策略管理器220确定变速器操作档位中哪些是可选的,以及确定输出扭矩需求,其包括策略加速度输出转矩需求(‘策略加速度输出转矩需求’)和策略净输出转矩需求(‘策略净输出转矩需求’),所有这些都输入到操作档位状态分析器260,与这些一起的还有系统输入(‘系统输入’),功率成本输入(‘功率成本输入’),以及在预先确定的限制外操作的相关的惩罚成本。操作档位状态分析器260基于操作者转矩需求,系统输入,可用的电池功率和功率成本输入生成各允许的操作档位状态的优选的功率成本(‘P*cost’)和相关的输入速度(‘N*i’)。允许的操作档位状态的优选的功率成本和相关的输入速度被输入到状态稳定器和仲裁块280,其基于此选择优选的操作档位状态和优选的输入速度。

图5显示了细述策略管理器220的操作的功能性框图。在策略管理器220的内部是输入加速度算法(‘Calc Nidot(Modes)’)(221),转矩补偿算法(‘PrecalcTrqOffset’)(220),和策略管理器算法(223)。策略管理器算法的输入包括预测的加速度输出转矩需求(‘预测的加速度输出转矩需求’)、预测的制动输出转矩需求(‘预测的制动输出转矩需求’),以及输出速度(‘No’)。策略管理器算法223确定策略输出速度,策略转矩需求,输出元件64的旋转输出加速度。输入加速度算法221输入策略输出速度(‘无策略的’),策略转矩需求(‘需求策略的’),以及旋转输出加速度(‘Nodot’)。输入加速度算法221为连续可变模式M1和M2确定输入元件12的旋转输入加速度(‘Nidot’)。转矩补偿算法222确定转矩补偿给第一和第二电机56和72中每一个(‘Ta补偿’和‘Tb补偿’)用于连续可变模式之一的操作,以及确定输出转矩补偿用于固定档位之一(‘To补偿’)的操作。转矩补偿优选地在策略管理器220中确定以提高计算机效率。转矩补偿如下所述的被输出给操作档位状态分析器260。

优选地,策略输出速度包括在将来某一时间瞬时所发生的预测的输出速度。确定预测的输出速度的一种方法包括确定监测的输出速度No的基于时间的导数,将该结果乘以从现在到将来某一时刻瞬时的经过的时间,并且将结果加上监测的输出速度No。策略转矩需求优选地是将来某一时间瞬时的操作者转矩需求和优选地是基于预测的加速度输出转矩需求。旋转输出加速度优选地基于监测的输出速度确定。旋转输出加速度可通过计算输出速度No基于时间的导数,并将该结果加上所监测的输出速度No而确定。

图6表示的是操作档位状态分析器260。操作档位状态分析器260,在包括允许的操作档位状态M1(262)、M2(264)、G1(270)、G2(272)、G3(274)和G4(276)之一的每个候选操作档位状态中执行搜索,以确定优选的转矩致动器操作,即该实施例中的发动机14及第一和第二电机56和72。优选的操作优选地包括操作混合动力传动系统的最小功率成本和响应于操作者转矩需求在候选操作档位状态中进行操作的相关的发动机输入。相关的发动机输入包括至少一个优选的发动机输入速度(‘Ni*’),优选的发动机输入功率(‘Pi*’),以及优选的发动机输入转矩(‘Ti*’),其响应于并优选地满足操作者转矩需求。操作档位状态分析器260评估M1发动机停止(264)和M2发动机停止(266)以确定响应于并优选地满足当发动机14处于停止状态时操作者转矩需求的操作动力传动系统的优选的成本(‘P*cost’)。

图7示意性地显示了一维搜寻表610的信号流。该实施例中包括最小和最大输入转矩(‘TiMin/Max’)的可控输入的范围,被输入给一维搜索引擎415。该一维搜索引擎415重复生成候选输入转矩(‘Ti(j)’),其范围介于最小和最大输入转矩之间,每一候选输入转矩被输入给优化函数(‘Opt To/Ta/Tb’)440,进行n次收缩迭代。其它到优化函数440的输入包括优选包括电池功率、离合器转矩、电机工作、变速器和发动机机工作、特定操作档位状态和操作者转矩需求的参数状态。该优化函数440确定变速器工作,其包括输出转矩、电机转矩,和基于响应于候选操作档位状态的转矩要求的候选输入转矩相关的电池功率(‘To(j),Ta(j),Tb(j),Pbat(j),Pa(j),Pb(j)’)。

图8显示了操作档位状态分析器260的块262和264中所执行的连续可变模式M1和M2中的优选操作。这包括参照图7和9所示的执行二维搜索表620,协同执行一维搜索,利用基于可被仲裁的在先决定的输入速度(‘输入速度稳定与仲裁’)615以确定操作档位状态的优选成本(‘P*cost’)和相关优选输入速度(‘N*i’)的一维搜索表610。如参照图8所描述的,该二维搜索表620确定第一优选的成本(‘二维P*cost’)和相关的第一优选的输入速度(‘二维N*I’)。第一优选输入速度被输入到二维搜索表620和加法器612。该加法器612将第一优选输入速度和与预定时间阶段(‘dt’)相乘的输入速度的变化时率相加。该结果与由二维搜索表620所决定的第一优选输入速度一起输入到开关605。控制该开关605,以将加法器612所得的结果或者由二维搜索表620所决定的优选输入速度输入到一维搜索表610。当动力传动系统以再生制动模式操作时,比如,当操作者转矩需求包括在输出元件64处生成及时输出转矩,以利用驱动系统90对作用转矩起作用而优选地使车辆减速的需求时,控制该交换机605,以将由二维搜索表620所决定的优选输入速度输入到一维搜索表610(如图)。当操作者转矩需求未包括再生制动时,控制开关605到第二位置(未示出),以将加法器612得到的结果输入。一维搜索表610被执行,利用一维搜索表610以确定第二优选成本(‘一维P*cost’),该成本被输入到输入速度稳定和仲裁块615以选择最终优选的成本和相关的优选输入速度。

图9示意性地显示了二维搜索表620的信号流。该实施例中的两个可控输入的范围,包括最小和最大输入速度(‘NiMin/Max’)和最小和最大输入功率(‘PiMin/Max’)被输入到二维搜索引擎410。在另一实施例中,这两个可控输入可包括最小和最大输入速度和最小和最大输入转矩。该二维搜索引擎410重复生成候选输入速度(‘Ni(j)’)和候选输入功率(‘Pi(j)’),其范围介于最小和最大输入速度和功率之间。候选输入功率优选地转换成候选输入转矩(‘Ti(j)’)(412)。每一候选输入速度(‘Ni(j)’)和候选输入转矩(‘Ti(j)’)输入到优化函数(‘OptTo/Ta/Tb’)440,进行n次搜索迭代。其它对优化函数440的输入包括系统输入,其优选地包括电池功率、离合器转矩、电机工作、变速器和发动机机工作,特定操作档位状态和操作者转矩需求的参数状态。该优化函数440确定变速器工作,其包括输出转矩、电机转矩,和与基于候选操作档位状态所需的系统输入和操作转矩的候选输入功率和候选输入速度相关联的相关电池功率(‘To(j),Ta(j),Tb(j),Pbat(j),Pa(j),Pb(j)’)。

图10示意性地显示了如上所述的动力传动系统示例的内容中,通过混合动力传动系统的功率流和功率损失。存在来自将燃料功率(‘PFUEL’)传送到发动机14并将输入功率(‘PI’)传送到变速器10的燃料存储系统9的第一功率流路径。在第一流动路径中功率损失包括发动机功率损失(‘PLOSS ENG’)。存在将电力(‘PBATT’)从ESD74传送到TPIM19,将电力(‘PINELEC’)传送到第一和第二电机56和72,将电动机功率(‘PMOTORMECH’)传送到变速器10的第二功率流路径。在第二流动路径中功率损失包括电池功率损失(‘PLOSS BATT’)和电机功率损失(‘PLOSSMOTOR’)。TPIM19具有电力功率负载(‘PHV LOAD’),其充当系统中的电力负载(‘HV负载’),其可包括低电压电池存储系统(未示出)。该变速器10具有系统中的机械惯性功率负载输入(‘PINERTIA’)(‘惯性存储’),其优选地包括来自发动机14和变速器10的惯性。该变速器10具有机械功率损失(‘PLOSSMECH’)和功率输出(‘POUT’),当以轴动力(‘PAXLE’)的形式传输到驱动系时其可受制动功率损失(‘PLOSSBRAKE’)影响。

输入到成本函数450的功率成本是基于与车辆驱动能力、燃油经济性、排放和电池使用相关的因素所确定的。功率成本被分配并与燃料和电力成本相关,且与混合动力传动系统的特定操作点相关。低操作成本与高转化效率下的低燃油成本、低电池功率使用和发动机速度/负载操作点的低排放相关,并考虑发动机14的候选操作状态。如以下的描述,功率成本可以包括发动机功率损失(‘PLOSSENG’)、电机功率损失(‘PLOSS MOTOR’)、电池功率损失(‘PLOSS BATT’)、制动功率损失(‘PLOSS BRAKE’),和机械功率损失(‘PLOSS BMECH’),其与特定操作点的混合动力传动系统操作相关;特定操作点包括输入速度、电机速度、输入转矩、电机转矩、变速器操作档位状态和发动机状态。

优选地,对于模式操作M1和M2,电机转矩补偿在第一和第二电机56和72的各转矩补偿算法222中所确定。发动机转矩补偿的确定是基于旋转输出加速度、旋转输入加速度和策略输出速度。第一电机56的电机转矩补偿的确定是基于以下等式:

Taoffset=b12NO+c11NI+c12No---[1]

其中

NO代表输出速度,

代表旋转输入加速度,

代表旋转输出加速度,

b12,c11和c12代表已知的基于为特定应用和特定操作档位状态所确定的硬件齿轮和轴连接的参数值。

第二电机72的电机转矩补偿的确定基于以下等式:

Tboffset=b22NO+c21NI+c22No---[2]

其中

b22,c21和c22代表已知的基于为特定应用和特定操作档位状态所确定的硬件齿轮和轴连接的参数值。

对于连续可变模式M1和M2,图5所示的输入加速度算法221被执行以确定输入元件12的旋转输入加速度。旋转输入加速度基于策略输出速度、策略转矩需求和旋转输出加速度。

确定旋转输入加速度的第一方法基于如下的公式:

NI=dOptNidt=(OptNiNo)dNodt+(OptNiTo)dTodt---[3]

其中

OptNi代表优选的输入速度,

No代表策略输出速度,

To代表策略转矩需求,且

t是时间。

策略转矩需求的基于时间的导数可以基于一预定时间间隔中预测的操作者转矩需求的变化来确定。输出加速度即No,可如下所述确定。

优选输入速度相对于输出速度的变化率即优选输入速度OptNi相对于输出速度的偏导数,即第一偏导数和优选的输入速度相对于输出转矩的变化率即优选输入速度相对于策略转矩需求的偏导数,即第二偏导数可基于输出速度No和策略转矩需求和相应的优选输入速度所确定。优选地,第一偏导数和第二偏导数在操作状态分析器260中确定,并储存在数据查询表中,该查询表由输出速度和输出转矩索引,用于通过输入加速度算法221检索。实现等式3的方法描述如下。

确定优选的输入(OptNi)速度用于输出转矩值和输出速度值的预定范围。优选地,值的范围是动态的,且基于输入速度确定。优选地,优选的输入速度通过仿真独立于用于为输出速度和预测的加速度输出转矩需求确定优选的输入速度的进程的HCP5中的策略管理器220和操作档位状态分析器260得以确定。每一确定的优选的输入速度储存在OptNi查询表中,并根据输出速度和输出转矩进行索引。最初地,每一优选的输入速度值在OptNi查询表中设置为0。

OptNi查询表中优选的输入速度值用于确定第一偏导数和第二偏导数。第一偏导数基于以下公式得以确定,假设ΔNo低于预先确定的阈值:

OptNiNo=OptNi(Noj,Toi)-OptNi(Noi,Toi)ΔNo---[4]

其中

下标“j”和“i”表示特定的循环,其值的范围从1到n,

OptNi(Noj,Toi)是优选的输入速度,其对应于在jth循环中使用的输出速度值,和ith循环中使用的输出转矩。

OptNi(Noi,Toi)是优选的输入速度,其对应于在ith循环中使用的输出速度值,和ith循环中使用的输出转矩,以及

ΔNo是在ith循环和jth循环之间的输出速度的变化。

第二偏导数的确定是基于以下的公式,假设ΔNo低于预先确定的阈值:

OptNiTo=OptNi(Noi,Toj)-OptNi(Noi,Toi)ΔTo---[5]

其中

OptNi(Noi,Toj)是优选的输入速度,其对应于在ith循环中使用的输出速度值,和jth循环中使用的输出转矩。

OptNi(Noi,Toi)是优选的输入速度,其对应于在ith循环中使用的输出速度值,和ith循环中使用的输出转矩,以及

ΔTo是在ith循环和jth循环之间的输出转矩的变化。

第一偏导数可储存在查询表中,例如,具有对应于输出速度和输出转矩范围的多个第一偏导数的查询表。第二偏导数可储存在查询表中,例如,具有对应于输出速度和输出转矩范围的第二偏导数的查询表。第一和第二偏导数查询表在输入加速算法221中更新。

第一种方法包含了基于策略输出速度和策略转矩需求定位第一和第二查询表中的第一和第二偏导数。第一偏导数与输出加速度相乘。其结果加上输出转矩的时间导数和第二偏导数的乘积。这一结果就是输入加速度,可用于确定以上所述的转矩补偿算法222中的电机转矩补偿Ta offset和Tb offset。

当操作处于M1或M2中一种模式操作档位状态时,用于确定输入加速度的第二种方法由等式6表示:

其中

OptNi表示优选的输入速度,

No表示策略输出速度

To表示策略转矩需求

Po表示输出功率,以及

t是时间。

输出功率的时间导数可基于输出元件64的输出功率来确定。输出加速度的确定如下所示。

优选输入速度OptNi相对于输出功率的变化率即优选输入速度相对于输出功率的偏导数,即第三偏导数,其可基于输出速度、输出功率和相应的优选输入速度确定。第二偏导数的确定如以上所述的第一方法。

在第二方法中,优选的输入速度为各个迭代生成的输出速度和输出功率而确定。优选的输入(OptNi)速度为输出功率值和输出速度值的预先确定的范围而确定。优选地,值的范围是动态的,且基于输入速度确定。优选地,优选的输入速度的确定是通过仿真独立于用于为输出速度和预测的加速度输出转矩需求确定优选的输入速度的进程的HCP5中的策略管理器220和操作档位状态分析器260。每一确定了的优选的输入速度储存在OptNi查询表中,根据输出速度和输出功率索引。最初地,每一优选的输入速度值在OptNi查询表中设置为0。OptNi查询表中优选的输入速度值用于确定第一偏导数和第三偏导数。第一偏导数如以上所描述的第一方法得以确定。

第三偏导数的确定基于以下的公式,假设ΔPo低于预先确定的阈值:

OptNiPo=OptNi(Noi,Poj)-OptNi(Noi,Poi)ΔPo---[7]

其中

OptNi(Noi,Poj)是优选的输入速度,其对应于在ith循环中使用的输出速度值,和jth循环中使用的输出功率。

OptNi(Noi,Poi)是优选的输入速度,其对应于在ith循环中使用的输出速度值,和ith循环中使用的输出功率,以及

ΔPo是在ith循环和jth循环之间的输出功率的变化。

第一偏导数可储存在查询表中,即,对应于各个重复生成的输出速度和输出功率的偏导数查询表。第三偏导数可储存在第三查询表中,即,包括有对应于输出速度和输出功率的第三偏导数的查询表。第一和第二偏导数查询表在输入加速度算法221中更新。

图11显示了确定输入加速度的第二种方法的实施。该方法包含了基于策略输出速度和策略转矩需求定位第一和第三查询表中的第一和第三偏导数。第一偏导数减去第三偏导数和策略转矩需求的乘积。该结果与输出加速度相乘,并加上第三偏导数和输出功率的时间导数的乘积。该结果是输入加速度,然后用于确定如上所述的转矩补偿算法222中的电机转矩补偿Tao ffset和Tb offset。

本领域的技术人员应该知道的是,在用于确定输入加速度的第一和第二方法中通过策略最优控制表310的连续迭代将OptNi查询表中的优选输入速度值收敛于基本静态的值。在第一次穿越基于零输入加速度的策略优化控制表310的过程中在策略管理器220中确定电机转矩补偿。当操作档位状态分析器260中优选输入速度填充到OptNi查询表中,偏导数查询表可被填充,而输入加速度基于填充了的查询表来确定。策略管理器220中连续的输入加速度的确定是基于优选的输入速度得到的,而该输入速度是基于在前的输入加速度确定。

对于连续可变模式M1和M2,优化函数440基于策略管理器220中所确定的电机转矩补偿为各候选输入速度Ni(j)和候选输入转矩Ti(j)确定了输出转矩和电机转矩。输出转矩和电机转矩的确定基于以下的等式:

TA(j)TB(j)=a11a12a21a22TI(j)TO(j)+b11·NI(j)b21·NI(j)+TaoffsetTaoffset---(8)

输出转矩(‘To(j)’)、电机转矩(‘TA(j)’)和(‘TB(j)’),以及相关的电池功率和功率成本输入都被输入到成本函数450,执行该成本函数以确定功率成本(‘Pcost(j)’),从而在候选输入功率或者候选输入转矩和候选输入速度处响应于候选操作档位状态中的操作者转矩需求而操作传动动力系统。一维搜索引擎415循环生成输入转矩范围内的候选输入转矩,并确定与此相关的功率成本以确认优选的输入转矩(‘Ti*’)和相关优选的成本(‘P*cost’)。优选的输入转矩(‘Ti*’)包含输入转矩范围内的候选输入转矩,其导致候选操作档位状态的最小功率成本,即优选的成本。二维搜索引擎410循环生成输入速度范围和输入功率范围内的候选输入功率和候选输入速度,并确定与此相关的功率成本以确认优选的输入功率(‘Pi*’)和优选的输入速度(‘Ni*’)、相关的优选成本(‘P*cost’)。优选的输入功率(‘Pi*’)和优选的输入速度(‘Ni*’)包括候选输入功率和候选输入速度,这导致候选操作档位状态的最小功率成本。

状态稳定和仲裁块280选出优选的变速器操作档位状态(‘混合动力需求档位状态’),其优选地是与用于来自操作档位状态分析器260的允许的操作档位状态输出的最小优选成本相关的变速器操作档位状态,把与改变变速器操作中操作档位状态以影响稳定的动力传动系统操作的仲裁效果相关的因素考虑入内。优选的输入速度(‘Ni_Des’)是与优选发动机输入相关的发动机输入速度,而优选发动机输入包括优选发动机输入速度(‘Ni*’),优选发动机输入功率(‘Pi*’),和优选发动机输入转矩‘Ti*’),其相对于和优选地满足操作者对选择的优选的操作档位状态的转矩需求。

图12图示了使用第一种或者第二种方法未补偿惯性效果和补偿了惯性效果所确定的优选输入速度。补偿了惯性效果所确定的优选输入速度包括了额外的速度以克服惯性效果。未补偿惯性效果所确定的优选输入速度不包括额外的速度以克服惯性效果。

应该理解的是在本公开的范围之内的修改是允许的。已特别参照了优选的实施例和对其的修改对本公开进行了描述。在阅读和理解说明书后也可能对其他部分作出更进一步的修改和替换。其旨在包括所有这些修正和替换,只要其进入本公开的范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号